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ABSTRACT

An analysis of the noise effect on the convergence charac-
teristic of the least-mean-squares (LMS) type adaptive al-
gorithms for blind channel identification is presented. It is
shown that the adaptive blind algorithms misconverge in the
presence of noise. A novel technique for ameliorating such
misconvergence characteristic, using a frequency domain en-
ergy constraint in the adaptation rule, is proposed. Exper-
imental results demonstrate that the robustness of the blind
adaptive algorithms can be significantly improved using such
constraints.

1. INTRODUCTION

Blind channel identification (BCI) is a common issue in di-
verse fields of science and engineering. Signals transmitted
from the source are adversely affected by the propagating
medium/channel. The channel identification, therefore, is re-
quired to remove its detrimental effect from the received sig-
nal often by inversion. In communications, the problem is
to equalize the channel effect on the received signal to ob-
tain the transmitted signal. In geophysics, the reflectivity of
the earth layers is explored by extracting seismic wavelets
from the sensor signals. In speech processing, particularly
in acoustic dereverberation, the problem is to separate the
sound source from the received microphone signals.

Several single and multichannel BCI schemes are re-
ported in the literature. Multichannel identification schemes,
however, are recognized to be more effective in removing
the unknown channel effects than their single channel coun-
terparts. Among the various techniques reported so far, e.g.
least-squares approach [1], subspace method [2], maximum-
likelihood method [3], Newton algorithm [4], the LMS al-
gorithm [4] is simple and efficient. Among all of its vari-
ants, it has been shown in [5] that the normalized multichan-
nel frequency domain LMS (NMCFLMS) algorithm is more
computationally efficient and effective for identifying long
acoustic channels which are of particular interest for derever-
beration. However, the LMS-type blind adaptive algorithms
lack robustness to additive noise. It is shown using numer-
ical examples in [6] that the NMCFLMS algorithm miscon-
verges if the observations are corrupted by noise. A method
for improving robustness has been also described in that pa-
per. The implementation, however, requires knowledge of
the positions and amplitudes of some dominant components
of the impulse responses which make the algorithm nonblind
and thus limits its use in practical situations.

In this paper, we give an analysis of the noise effect on the
convergence characteristic of the LMS-type blind adaptive

algorithms and show that they misconverges due to nonzero
gradient of the noisy error performance surface. The nonzero
gradient has the effect of attenuating the high frequency com-
ponents of the channel estimate and thus leads to a miscon-
verged solution in the end. To ameliorate misconvergence
characteristics of such algorithms, we propose a novel tech-
nique that plays the role of enhancing the high frequency
components and thus attempts to counter balance the detri-
mental effect of nonzero gradient of the cost function.

2. PROBLEM FORMULATION

Consider a speech signal recorded inside a non anechoic
room using a linear array of microphones. The channel out-
puts and observed signals are then given by

yi(n) = s(n)∗hi(n) =
L−1

∑
k=0

hi,k(n)s(n−k) (1)

xi(n) = yi(n)+vi(n), i = 1,2, · · · ,M (2)

whereM is the number of microphones,s(n), yi(n), xi(n),
vi(n) andhi,k(n) denote, respectively, the clean speech, re-
verberant speech, the reverberant speech corrupted by back-
ground noise, observation noise, and impulse response of the
source toith microphone. It is assumed that the additive
noise onM channels is uncorrelated white random sequence,
i.e., E{vi(t)v j(t)} = 0 for i 6= j and E{vi(t)vi(t − t ′)} = 0
for t ′ 6= 0. It is also assumed thatvi(n) are uncorrelated with
s(n).

A blind channel identification algorithm estimateshi =
[hi,0 hi,1 · · ·hi,L−1]T , i = 1,2, · · · ,M solely from the obser-
vationsxi(n), n = 1,2, · · · ,N. The identifiability conditions
commonly stated are: i) The channel transfer functions don’t
contain any common zeros, ii) The autocorrelation matrix of
the source signal is of full rank. In this paper, we explore the
reason behind misconvergence of the LMS-type algorithms
reported in [4] and [5], and propose to attach a spectral con-
straint in the adaptation rule in order to improve their robust-
ness to the blind identification of time-invarianthi from the
noise corrupted sequencexi(n).

3. THE NMCFLMS ALGORITHM

In this section, the NMCFLMS algorithm is briefly summa-
rized as it is known to be more computationally efficient
and effective among the LMS-type algorithms for identifying
long acoustic channels. From (1), we deduce the following
relationship:

yi(n)∗h j,k−y j(n)∗hi,k = 0 (3)
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However, in presence of noise an error function may be de-
fined as

ei j (n) = xi(n)∗ ĥ j,k−x j(n)∗ ĥi,k (4)

The frequency domain instantaneous squared error at them-
th block minimized by the NMCFLMS algorithm is given by

Jf (m) =
M−1

∑
i=1

M

∑
j=1+1

eH
i j (m)ei j (m) (5)

whereei j (m) is the frequency-domain block error signal be-
tween thei-th and j-th channels. As reported in [5], the al-
gorithm is summarized below:

ĥ
10
k (m+1) = ĥ

10
k (m)−µ[pk(m)+δI2L×2L]−1 (6)

×
M

∑
i=1

D∗
xi
(m)e01

ik (m), k = 1,2, · · · ,M

where

ĥ
10
k (m) = F2L×2L

[
ĥk(m)

0

]
(7)

e01
ik (m) = F2L×2L

[
0

F−1
L×Leik(m)

]
(8)

pk(m) = λpk(m−1)+(1−λ )
M

∑
i=1,i 6=k

D∗
xi
(m)Dxi (m),

k = 1,2, · · · ,M. (9)

Herem is the frame index andF denotes the discrete Fourier
transform (DFT) matrix. The frequency-domain error func-
tion eik(m) is given by

eik(m) = Dxi (m)ĥk(m)−Dxk(m)ĥi(m) (10)

The diagonal matrixDxi (m) is the DFT of themth frame data
block for theith channel, i.e.,

Dxi (m) = diag(F{xi(m)2L×1})
xi(m)2L×1 = [xi(mL−L) xi(mL−L+1)

· · ·xi(mL+L−1)]T (11)

and the estimate of thekth channel coefficient vector is de-
fined aŝhk(m) = [ĥk,0(m) ĥk,1(m) · · · ĥk,L−1(m)]T .

4. NOISE EFFECT ON THE ADAPTIVE BCI
ALGORITHMS

In this section, we present a time-domain analysis of noise
effect on the LMS-type adaptive BCI algorithms. To inves-
tigate the convergence characteristic of such algorithms in
presence noise, we rewrite the error function in (4) as

ei j (n)= [yi(n)∗h j,k−y j(n)∗hi,k]
+ [vi(n)∗h j,k−v j(n)∗hi,k] = eyi j(n)+evi j(n) (12)

From (12), we see that under noisy condition the error func-
tion, ei j (n), consists of two parts, namelyeyi j(n) andevi j(n).
What happens if the filter coefficients are derived by min-
imizing ei j (n) in the mean squared error (MSE) sense is a
concern of this paper. The cost function is defined as

Jx = E{Jx(n)}= E

{
M−1

∑
i=1

M

∑
j=i+1

ε2
i j (n)

}
(13)

whereE{·} denotes the expectation operator and

εi j (n) =

{
ei j (n)
||ĥi j ||2

, i 6= j, i, j = 1,2, · · · ,m
0, i = j, i, j = 1,2, · · · ,m

(14)

The errorei j (n) is divided by||ĥi j || to avoid the trivial es-
timate. Using (12) and neglecting the crosscorrelation be-
tween noise and signal, we can write (13) as

Jx = E

{
M−1

∑
i=1

M

∑
j=i+1

e2
yi j(n)

||ĥi j ||2

}
+E

{
M−1

∑
i=1

M

∑
j=i+1

e2
vi j(n)

||ĥi j ||2

}

= Jy +Jv (15)

whereJy andJv denote the mean squared error due to signal
and noise, respectively. The mean squared error estimate of
the channel impulse response is given by

ĥ = argmin
ĥ

(Jy +Jv), subject to||ĥ||= 1 (16)

The minimization of the first part, i.e.Jy, with respect to the
adaptive filter coefficients is equivalent to that of the noise-
free case. The second part may be viewed as a constraint at-
tached to that minimization process with a built-in Lagrange
multiplier.

The LMS algorithm finds the desired solution by moving
along the opposite direction of the performance surface at
each iteration:

h(n) = h(n−1)−µ
∂Jx

∂h(n−1)
(17)

Using (15), the gradient of the cost function may be obtained
as

∇Jx = ∇Jy +∇Jv (18)

where∇Jy and∇Jv denote the gradients of the noise-free and
noise only cost function, respectively. Substituting (18) into
(17), we obtain

h(n) = h(n−1)−µ(∇Jy +∇Jv) (19)

It can be shown that the MSEJv due to the noise only term is

Jv = E{Jv(n)} =
1

||ĥ||2

[
∑
i 6=1

σ2
vi
ĥT

1 ĥ1 + ∑
i 6=2

σ2
vi
ĥT

2 ĥ2 + · · ·

+ ∑
i 6=M

σ2
vi
ĥT

MĥM

]
(20)

Then the gradient ofJv is given by

∇Jv = E{∇Jv(n)}=
2

||ĥ||2
[Rv−JvIML×ML] ĥ (21)

and that ofJy is given by

∇Jy = E{∇Jy(n)}=
2

||ĥ||2
[Ry−JyIML×ML] ĥ (22)
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Figure 1: Magnitude spectrum of the misconverged NM-
CFLMS estimates of AIRs at SNR=15dB. The concatenated
true AIRs are shown in Fig. 2 (a).

For the convergence of the LMS type algorithms it is neces-
sary that∇Jx approaches zero with iterations, i.e.,

∇Jx = ∇Jy +∇Jv = 0 (23)

The total gradient can only be zero if and only if∇Jy =−∇Jv
because∇Jv 6= 0 as can be seen from(22) for unequal
noise powers on the channels. It can also be shown that
∇Jy 6= −∇Jv in general. This findings leads to an important
conclusion that the presence of noise in blind multichannel
identification algorithms makes the signal plus noise MSE
surface non-concave though the signal MSE surface has a
global minimum. Thus the deleterious consequence of noise
effect is the non-zero gradient of the cost function (Jx).

It has been observed that this effect is equivalent to spec-
tral attenuation of the estimated impulse response after the
decay of the initial transient. Analytical work to study this in
more detail is underway. Thus the misconverged solution is
nothing but the spectrally attenuated version of an interme-
diate estimate during the iteration. The spectral attenuation
can be verified by observing the magnitude spectrum of the
misconverged AIRs shown in Fig. 1.

5. THE ENERGY CONSTRAINED NMCFLMS
ALGORITHM

We now consider modifying the adaptive algorithm such that
the estimated impulse response Fourier domain energy is ap-
proximately uniformly distributed. We derive a robust adap-
tation rule by attaching a frequency domain constraint calcu-
lated solely from the estimated impulse response at each iter-
ation to the original cost function. The constraint is of inter-
est in practical applications since we can assume that the en-
ergy in the frequency domain is evenly distributed for acous-
tic/random channels. For unit norm constraint, i.e.,||ĥ||= 1,
the frequency-domain energy of the concatenated impulse re-
sponse is also unity following the Parseval’s relation.

The convergence characteristic can be ameliorated by
minimizing the constrained cost function defined as

minimize J = E[Jf (m)]

subject to
k2

∑
k=k1

|Ĥ(k)|2 = γE (24)

whereĤ(k) denotes theML-th point DFT coefficient of̂h(m)
andE = 1/(ML)∑ML−1

k=0 |Ĥ(k)|2. Using the Lagrange multi-
plier β , the instantaneous cost function can be reformulated
as

J(m) = Jf (m)+βJP(m) (25)

where the penalty termJp(m) is given by

Jp(m) =

(
γE −

k2

∑
k=k1

|Ĥ(k)|2
)2

(26)

wherek1 andk2 determines the region of̂H(k) to be empha-
sized to prevent misconvergence. The typical values fork1
andk2 areML/4 and3ML/4−1, respectively whenML is
an integer multiple of 4. In this case,γ can be set to 0.5, i.e.
the total energy is assumed to be equally divided in the low
and high frequency subbands. A more general penalty func-
tion may be obtained using a symmetrical weighting function
0≤W(k)≤ 1:

Jp(m) =

(
γE − 1

ML

ML−1

∑
k=0

W(k)|Ĥ(k)|2
)2

(27)

In this case, energy distribution factorγ can be obtained as
γ = ∑ML−1

k=0 W(k)/ML. The summation term in (27) can be
written in vector-matrix form as

ML−1

∑
k=0

W(k)|Ĥ(k)|2 = ĥ
H
(m)Wĥ(m) (28)

whereW is the diagonal matrix with diagonal entries rep-
resenting the weights,W(k), of the DFT coefficients. Using
(28), we can rewrite (27) as

Jp(m) =
(

γE − 1
ML

ĥ
H
(m)Wĥ(m)

)2

(29)

The weighting matrixW balances energy distribution among
the low and high frequency DFT coefficients. The lowpass
effect of the gradient descent LMS type algorithms can be
counter balanced by properly choosingW.

The gradient of the penalty termJp(m) with respect tôh
∗

can be obtained as

∇Jp(m) =

[
(

∂Jp

∂ ĥ
∗
1

)T · · ·( ∂Jp

∂ ĥ
∗
k

)T · · ·( ∂Jp

∂ ĥ
∗
M

)T

]T

=
−2(γE − 1

ML ĥ
H
(m)Wĥ(m))

ML
Wĥ(m) (30)

With the gradient vector computed, we can now define the
parameter update equation for the constrained NMCFLMS
algorithm. The update equation for the proposed algorithm
will contain an additional term due to the penalty function as
compared to the original one, and is given by

ĥ
10
k (m+1)= ĥ

10
k (m)−µ [pk(m)+δI2L×2L]−1

×
M

∑
i=1

D∗
xi
(m)e01

ik (m)

−β µF∗2L×2L

[
F−1

L×L

(
∂Jp(m)

∂ ĥ
∗
k

)

0L×1

]
(31)
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6. SIMULATION RESULTS

In this section, we present computer simulation results to in-
vestigate the effectiveness of the proposed constrained algo-
rithm to blind channel estimation problems. The dimension
of the room was taken to be(5× 4× 3) m. A linear array
consisting ofM = 5 microphones with uniform separation
of τ = 0.2 m was used in the experiment. The first micro-
phone and source were positioned at(1.0,1.5,1.6) m and
(2.0,1.2,1.6) m, respectively. The positions of the other mi-
crophones can be obtained by addingτ = 0.2 m successively
with the y-coordinate of the first microphone. The impulse
responses were generated using the image model reported in
[7] for reverberation timeT60 = 0.1 s and then truncated so
as to make the lengthL = 128. In all cases, the source signal
was Gaussian white noise, andλ was fixed to[1−1/(3L)]L.

The performance index used for measurement of im-
provement is the normalized projection misalignment de-
fined as

NPM(m) = 20log10

(
1
||h||

∣∣∣∣∣

∣∣∣∣∣

[
h− hT ĥ(m)

ĥT(m)ĥ(m)
ĥ(m)

]∣∣∣∣∣

∣∣∣∣∣

)

(32)
where|| · || is thel2 norm. Using this index, the performance
of the proposed algorithm is compared with the conventional
NMCFLMS. We feel not fair, even though the results are sim-
ilar, to compare our proposed fully blind constrained algo-
rithm with the one reported in [6] as it is not a blind algorithm
in totality for the reason explained in Section 1.

The results of estimated AIRs using the conventional
NMCFLMS algorithm for µ = 0.5 and SNR=15 dB are
shown in Fig. 2. As can be seen, the sparse nature of the
true impulse responses shown in Fig. 2 (a) are not visible
in the estimates depicted in Fig. 2 (b). It is interesting to
observe that the nature of the estimates of different channels
at the misconvergence are also very similar. This result in-
dicates that the lowpass filters acting on each channel have
very similar bandwidth with narrowband characteristic. On
the contrary, the proposed constrained algorithm accurately
estimates the AIRs. Comparative results on the convergence
rate of the NMCFLMS algorithm with and without con-
straints are shown in Fig. 3 forµ = 0.5 and SNR=15 dB. As
expected, the convergence of the conventional NMCFLMS
algorithm under noisy condition is followed by misconver-
gence. In contrast, the constrained NMCFLMS algorithm
proposed in this paper is asymptotically stable at the prelim-
inary convergence which is though somewhat biased due to
noise. The bias gets lower as the noise level decreases.

7. CONCLUSIONS

In this paper, we have investigated the performance of the
NMCFLMS algorithm in the identification of AIRs when ob-
servations are corrupted by noise. We have demonstrated
that the presence of additive noise leads to the misconver-
gence of the conventional NMCFLMS algorithm. The rea-
son behind misconvergence has been shown to be nonzero
gradient of the noise error surface. It is argued that the ef-
fect of nonzero gradient is the lowpass filtering on the AIRs.
A novel method has been proposed to stop misconvergence
and thus to ameliorate convergence characteristic of the blind
NMCFLMS algorithm by attaching a constraint on the en-
ergy of the high frequency DFT coefficients of the estimated
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Figure 2: Results on channel estimation at SNR=15dB using
the NMCFLMS; (a) True AIRs, (b) Estimated AIRs using
[5], and (c) Estimated AIRs using the proposed method.
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Figure 3: Comparative results using NPM at SNR=15dB.

impulse response. The constraint plays the role of a highpass
filter to counter balance the cause of misconvergence. In sup-
port of the theory, the numerical tests have also demonstrated
noise robustness of the proposed algorithm.
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