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ABSTRACT algorithms and show that they misconverges due to nonzero

An analysis of the noise effect on the convergence chara@rad!em of the noisy error performance su'rface. The nonzero
teristic of the least-mean-squares (LMS) type adaptive goradient has the effect of attenuating the high frequency com-
gorithms for blind channel identification is presented. It isPONenNts of the channel estimate and thus leads to a miscon-

shown that the adaptive blind algorithms misconverge in thi€"9ed solution in the end. To ameliorate misconvergence
presence of noise. A novel technique for ameliorating sucfiharacteristics of such algorithms, we propose a novel tech-

misconvergence characteristic, using a frequency domain efidue that plays the role of enhancing the high frequency
ergy constraint in the adaptation rule, is proposed. Experqomponents and thus attempts to counter balanqe the detri-
imental results demonstrate that the robustness of the b"rmental effect of nonzero gradient of the cost function.

adaptive algorithms can be significantly improved using such

constraints. 2. PROBLEM FORMULATION

Consider a speech signal recorded inside a non anechoic
1. INTRODUCTION room using a linear array of microphones. The channel out-

uts and observed signals are then given b
Blind channel identification (BCI) is a common issue in di- P g g y

verse fields of science and engineering. Signals transmitted L-1

from the source are adversely affected by the propagating yi(n) = s(n)xhi(n)= Z)hi,k(n)s(n—k) 1)
medium/channel. The channel identification, therefore, is re- k=

quired to remove its detrimental effect from the received sig- xi(n) = y(n+v(n), i=12--- M (2)

nal often by inversion. In communications, the problem is i )
to equalize the channel effect on the received signal to opvhereM is the number of microphones(n), yi(n), x(n),
tain the transmitted signal. In geophysics, the reflectivity ofvi(n) andh;x(n) denote, respectively, the clean speech, re-
the earth layers is explored by extracting seismic waveletéerberant speech, the reverberant speech corrupted by back-
from the sensor signals. In speech processing, particular§round noise, observation noise, and impulse response of the
in acoustic dereverberation, the problem is to separate tHgource toith microphone. It is assumed that the additive
sound source from the received microphone signals. noise onM channels is un_correlated white random sequence,
Several single and multichannel BCI schemes are re-€- E{Vi(t)vj(t)} = 0 for i  j and E{vi(t)vi(t —t')} = 0
ported in the literature. Multichannel identification schemesfor ' # 0. Itis also assumed thag(n) are uncorrelated with
however, are recognized to be more effective in removin@(”)- ) ) o ) ]
the unknown channel effects than their single channel coun- A blind chaanlellldentlflcanon algorithm estimaths=
terparts. Among the various techniques reported so far, e.gi.0 hi1---hii1]', i =1,2,--- ,M solely from the obser-
least-squares approach [1], subspace method [2], maximur¥ationsx;(n), n=1,2,--- . N. The identifiability conditions
likelihood method [3], Newton algorithm [4], the LMS al- commonly stated are: i) The channel transfer functions don't
gorithm [4] is simple and efficient. Among all of its vari- COntain any common zeros, if) The autocorrelation matrix of
ants, it has been shown in [5] that the normalized multichanthe source signal is of full rank. In this paper, we explore the
nel frequency domain LMS (NMCFLMS) algorithm is more réason bghmd misconvergence of the LMS-type algorithms
computationally efficient and effective for identifying long eported in [4] and [5], and propose to attach a spectral con-
acoustic channels which are of particular interest for derevegtraint in the adaptation rule in order to improve their robust-
beration. However, the LMS-type blind adaptive algorithmsness to the blind identification of time-invariag from the
lack robustness to additive noise. It is shown using numerd0ise corrupted sequenggn).
ical examples in [6] that the NMCFLMS algorithm miscon-
verges if the observations are corrupted by noise. A method 3. THE NMCFLMS ALGORITHM

for improving robustness has been also described in that pgy this section, the NMCFLMS algorithm is briefly summa-
per. The implementation, however, requires knowledge ofizeq as it is known to be more computationally efficient
the positions and amplitudes of some dominant components,q effective among the LMS-type algorithms for identifying

of the impulse responses which make the algorithm nonblingyg acoustic channels. From (1), we deduce the following
and thus limits its use in practical situations. relationship:

In this paper, we give an analysis of the noise effect on the
convergence characteristic of the LMS-type blind adaptive Yi(n) xhjx—yj(n)*«hx=0 3)



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

However, in presence of noise an error function may be dewhereE{-} denotes the expectation operator and

fined as N N
gj(n) = x(n)=hjx—xj(n)=hix (4) &M i i=12
i(n) - .l( ) #hj j(n) = hi, gi(n) =14 Ihjl2’ .I#.L.I,.J 1,2,---.m (14)
The frequency domain instantaneous squared error athe 0, i=jiL,j=212--,m
th block minimized by the NMCFLMS algorithm is given by
M—1 M The errorgj(n) is divided by||ﬂi,~ || to avoid the trivial es-
Ji(m) = Zi Z g"j'(m)gj(m) (5) timate. Using (12) and neglecting the crosscorrelation be-
i=1 j=T+1 tween noise and signal, we can write (13) as
whereg; (m) is the frequency-domain block error signal be- M—1 M e§--(n) M-1 M e (n)
tween thei-th and j-th channels. As reported in [5], the al- J, = Zx > il Zx > il
gorithm is summarized below: iS4 |hij[]2 =P IE

BOMmel) = Bom) — plpem+ 0Lt (6) Y (15)

whereJ, andJ, denote the mean squared error due to signal
and noise, respectively. The mean squared error estimate of

M
XZD;(m)E&l<m)7 k:1a27 aM
= the channel impulse response is given by

where
. ~ h =argminJy+J,), subjectto/h|[=1 (16)
hko(m) = Foa [ hk(()m) ] (7 h
0 The minimization of the first part, i.el,, with respect to the
gff(l(m) = F2L><2L[ Fl e (m) } (8)  adaptive filter coefficients is equivalent to that of the noise-
LxL=ik free case. The second part may be viewed as a constraint at-
M tached to that minimization process with a built-in Lagrange
pk(M = Apk(M—1)+(1-A) ; D5 (MDx (M), multiplier.
i=Lizk The LMS algorithm finds the desired solution by moving
k=1,2,---,M. (9)  along the opposite direction of the performance surface at

Heremis the frame index anB' denotes the discrete Fourier each iteration:

transform (DFT) matrix. The frequency-domain error func- A%
tion e; (M) is given by h(n)=h(n-1) - Hohin—1) 17)
i(m) = Dy (M) (m) — Dy (M) (m) (10)

Using (15), the gradient of the cost function may be obtained
The diagonal matriDy, (m) is the DFT of themth frame data  as
block for theith channel, i.e.,

. 0 =03 +0Jy (18)
Dy(m) = diag(F {x (Mzc1}) S
xi(Maxa = [X(mL—L) x(mL—L+1) wherel1Jy and[JJ, denote the gradients of the noise-free and
iy T noise only cost function, respectively. Substituting (18) into
X(mbL—1)] (11) (17), we obtain
and the estimate of thith channel coefficient vector is de-
fined ashy(m) = [ho(m) hr(m)---hi 1 (m)]7. h(n)=h(n—-1)—u(0J+0J) (29)
4. NOISE EFFECT ON THE ADAPTIVE BCI It can be shown that the MSE due to the noise only term is
ALGORITHMS
In this section, we present a time-domain analysis of noisg§, — gf3.(n = o2hihi+ S o2hlho + - --
effect on the LMS-type adaptive BCI algorithms. To inves—gv ()} ||h|2 i; vt ;2 vitet2
tigate the convergence g:haracteristic of _such algorithms in
presence noise, we rewrite the error function in (4) as i ; G\ﬁfl{/. EM] (20)
& () =[yi(n)*hjk —yj(n) *hiy M

+ i)+ Ry =i () +higd = &ij (N) +&ij (M) (12)  Then the gradient o, is given by
From (12), we see that under noisy condition the error func- p
tion, g;(n), consists of two parts, namety;;(n) andey;j(n). 03 = ELO03 (N = Ro— I h 21
What happens if the filter coefficients are derived by min- . {03} ||ﬂ||2 [Ry = J v (21)
imizing &j(n) in the mean squared error (MSE) sense is a
concern of this paper. The cost function is defined as and that of}y is given by

2 ~

M-1 M
J=E{k(n)}= E{ i; j;lsﬁ(n)} (13) 03 =E{03(n)} = INE Ry—JIvxmlh (22
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whereH (k) denotes th&1L-th point DFT coefficient ofi(m)

4 T T
g True and& = 1/(ML) M1 [H(K)[2. Using the Lagrange multi-
g2 plier B, the instantaneous cost function can be reformulated
g as

% 05 1 15 2 J(m) = Js (M) + BIp(m) (25)

20 where the penalty terdy,(m) is given by
é Estimate k 2
Eu I Jp(m) = (vg— > |H<k>2> (26)

0 05 ! 15 2 wherek; andk, determines the region &f (k) to be empha-

Normalized frequency (x ) ) X .
sized to prevent misconvergence. The typical valueskfor

) ) _ andkp areML/4 and3ML /4 — 1, respectively whemML is
Figure 1: Magnitude spectrum of the misconverged NM-an integer multiple of 4. In this casgcan be set to 0.5, i.e.
CFLMS estimates of AIRs at SNRSdB. The concatenated the total energy is assumed to be equally divided in the low

true AIRs are shown in Fig. 2 (a). and high frequency subbands. A more general penalty func-
tion may be obtained using a symmetrical weighting function
0<W(k) <1
For the convergence of the LMS type algorithms it is neces- )
sary that1J, approaches zero with iterations, i.e., 1 ML-1 ~ i
Ip(m) = (v& - 5 WIRIA(K) @7)
03 =0+ 03 =0 (23) k=0

In this case, energy distribution factgrcan be obtained as

The total gradient can only be zero if and onlyldy = —0J, |, SMLLW(k)/ML. The summation term in (27) can be
becausel1J, # 0 as can be seen fronR2) for unequal |\ ritten in vector-matrix form as
noise powers on the channels. It can also be shown that

0Jy # —0Jy in general. This findings leads to an important
conclusion that the presence of noise in blind multichannel

identification algorithms makes the signal plus noise MSE ) _ o .
surface non-concave though the signal MSE surface hasV#here W is the diagonal matrix with diagonal entries rep-

global minimum. Thus the deleterious consequence of noisgsenting the weightV (k), of the DFT coefficients. Using

ML—-1 R H N
;) W(K)[H(K)|?=h" (m)Wh(m) (28)
k=

effect is the non-zero gradient of the cost functidg).( (28), we can rewrite (27) as
It has been observed that this effect is equivalent to spec- 1 R 2
tral attenuation of the estimated impulse response after the Jp(m) = (yé’— Wh (m)Wh(m)) (29)

decay of the initial transient. Analytical work to study this in

more detail is underway. Thus the misconverged solution i§he weighting matri balances energy distribution among
nothing but the spectrally attenuated version of an intermethe low and high frequency DFT coefficients. The lowpass
diate estimate during the iteration. The spectral attenuatiosffect of the gradient descent LMS type algorithms can be
can be verified by observing the magnitude spectrum of theounter balanced by properly choosivg.

misconverged AIRs shown in Fig. 1. The gradient of the penalty terdg(m) with respect tch”

can be obtained as
5. THE ENERGY CONSTRAINED NMCFLMS

ALGORITHM [<M)T.._(%)T...(M)T‘|T

D‘] m ~% ~% ~%
We now consider modifying the adaptive algorithm such that Pl Jh, ohy ohy,
the estimated impulse response Fourier domain energy is ap- ~H ~
proximately uniformly distributed. We derive a robust adap- o —2AvE - wih (m)Wh(m))Wﬁ(m) (30)
tation rule by attaching a frequency domain constraint calcu- ML -
lated solely from the estimated impulse response at each itegith the gradient vector computed, we can now define the
ation to the original cost function. The constraint is of inter-parameter update equation for the constrained NMCFLMS
estin practical applications since we can assume that the efifgorithm. The update equation for the proposed algorithm
ergy in the frequency domain is evenly distributed for acouswill contain an additional term due to the penalty function as
tic/lrandom channels. For unit norm constraint, igh|| =1, compared to the original one, and is given by
the frequency-domain energy of the concatenated impulse re-
sponse is also unity following the Parseval’s relation. ~10 ~10 _

The convergence characteristic can be ameliorated by Bk (M+1) =y (M) — [pk(m) + Lzt 21| '
minimizing the constrained cost function defined as M . o1
X Zl D; (m)ejc (m)
1=

minimize J = E[Jf(m)]

ke FL (M)
A~ k X =~k
subject to }R IHK)|? = y& (24) —BUFZ o ) alhk (31)
k=K1 x



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

6. SIMULATION RESULTS o %4 "L=128, M5, d=1m_ True |
g 0.2} Channell Channel 2 Channel 3 Channel 4 Channel5
In this section, we present computer simulation results to in- g u 1Ly Ly &

. - - 2 o0 A i bk
vestigate the effectiveness of the proposed constrained algo- ‘ ‘ ! Pt .
rithm to blind channel estimation problems. The dimension 100 200 300 400 500 600
of the room was taken to b x 4 x 3) m. A linear array g 01 Ref.[5] |
consisting ofM = 5 microphones with uniform separation 2 °%|| ]
of 7 = 0.2 m was used in the experiment. The first micro- & _ og— |

hone and source were positioned(&0,1.5,1.6) m and ' : : : : :

P ) NPy . 100 200 300 400 500 600
(2.0,1.2,1.6) m, respectively. The positions of the other mi- 04F ‘ ‘ ‘ ‘ 7
crophones can be obtained by adding 0.2 m successively g Proposed
with the y-coordinate of the first microphone. The impulse = 02} 1
responses were generated using the image model reported in% L_._Lu.qu T O WP
[7] for reverberation timelgo = 0.1 s and then truncated so 100 200 300 400 500 600
as to make the length= 128 In all cases, the source signal Samples

was Gaussian white noise, ahdvas fixed to1 —1/(3L)]".  Figure 2: Results on channel estimation at SMR&B using
The performance index used for measurement of imthe NMCFLMS; (a) True AIRs, (b) Estimated AIRs using
provement is the normalized projection misalignment def5], and (c) Estimated AIRs using the proposed method.

fined as e
a"” SNR=15 dB
~ ‘/ L=128, M=5,d=1m
NPM(m) = 20logo | — || |1 - wﬁ(m) g |/ K
[[] hT (m)h(m) E N [ cremet imaoe mose
(32) % .' Proposed

where|| - || is thel, norm. Using this index, the performance
of the proposed algorithm is compared with the conventional \ . ‘ \ ‘
NMCFLMS. We feel not fair, even though the results are sim- 1000 2000 3000 4000 5000 600D 7000 800D 9000
ilar, to compare our proposed fully blind constrained algo- _. _ . ame.m

rithm with the one reported in [6] as it is not a blind algorithm Figure 3: Comparative results using NPM at SNISIB.
in totality for the reason explained in Section 1.

The results of estimated AIRs using the conventiona|, ; ;
. - pulse response. The constraint plays the role of a highpass
NMCFLMS algorithm forp = 0.5 and SNR=15 dB are fjier 1o counter balance the cause of misconvergence. In sup-

shown in Fig. 2. As can be seen, the sparse nature of &, of the theory, the numerical tests have also demonstrated
true impulse responses shown in Fig. 2 (a) are not Visibl@ qice robustness of the proposed algorithm
in the estimates depicted in Fig. 2 (b). It is interesting to '
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