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ABSTRACT 

Despite various advances in recent years, robustness in the 
presence of various types and levels of environmental noise 
remains a critical issue for automatic speech recognition 
systems. This paper describes a novel and noise robust 
front-end that incorporates the use of Hough transform for 
simultaneous frequency and temporal masking, together 
with cumulative distribution mapping of cepstral 
coefficients, for noisy speech recognition. Recognition 
experiments on the Aurora II connected digits database have 
revealed that the proposed front-end achieves an average 
digit recognition accuracy of 83.31% for all the three 
Aurora test sets. Compared with the recognition results 
obtained by using the ETSI standard Mel-cepstral front-end, 
this accuracy represents a relative error rate reduction of 
around 57%. 

 

1. INTRODUCTION 

State-of-the-art automatic speech recognition (ASR) systems 
offer good performance if the training and usage conditions 
are similar and reasonably controlled. However, under the 
influence of noise, these systems begin to degrade and their 
accuracies may become unacceptably low in some severe 
environments. To remedy this noise robustness issue in ASR 
due to the mismatch in training and usage conditions, various 
adaptive techniques have been proposed. A common theme 
of these techniques is the utilization of some form of 
compensation to account for the effects of noise on the 
speech characteristics. Typical approaches to improving ASR 
robustness [1] include pre-enhancing the noisy speech signal 
[2], feature-space compensation of mismatch between clean 
and noisy speech features [3], and model-space methods that 
account for the effects of noise in the speech models [4]. 

In this work, the main focus is on feature-space 
compensation for a cepstral based front-end. It is 
demonstrated that a novel simultaneous frequency and 
temporal masking derived from Hough transform of the time-
frequency spectral sequences of a speech signal can be used 
together with cumulative distribution mapping to better 
compensate the effects of additive noises.  

The organization of this paper is as follows. It will 
describe the details of the proposed front-end in Section 2. 
Following this in Section 3 will be some recognition 
experiments on the Aurora II digits database and the 
discussion of the related findings. Finally, a conclusion will 
be presented in Section 4. 

2. PROPOSED FRONT-END 

The proposed front-end, with its block diagram shown in 
Figure 1, is made more robust by incorporating two 
additional processing modules into the ETSI standard Mel-
frequency cepstral coefficient (MFCC) front-end [5]. These 
new processing modules include Hough transform based 
masking (HTM) and cumulative distribution mapping 
(CDM) for the resultant cepstral coefficients. 
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Figure 1- Block diagram of the proposed front-end 

 
Typically, the MFCCs (Ci) of a frame of speech data 

without any noise compensation are given by: 
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where Sj is the output magnitude of the j-th Mel-filterbank 
and M is the total number of Mel-filters in the filterbank 
analysis.  

2.1 Spectral Masking using Hough Transform 

The Hough transform (HT) is a classical image processing 
algorithm for extracting parametric patterns, such as lines 
and circles, from a noisy image [6]. The HT method to 
extract a straight line in an image is based on transforming 
the position of a pixel at (x,y) on a line in the image plane 
(X-Y coordinates) into a sinusoidal curve on the Θ-R plane 
via: 

�
y

�
xr sincos ++++====   (2) 

 
where r is the length of a normal to the line from the origin 
and θ is the angle between this normal and the X-axis. An 
illustration of the Hough transform is shown in Figure 2. In 
the figure, the position of an image pixel at (x1,y1) is 
transformed into a sinusoidal curve on the Θ-R plane (the 
curve with smaller amplitude) and the line on X-Y plane 
joining  (x1,y1) and (x2,y2) is transformed into a point (θo,ro) 
on the Θ-R plane.  

 

 

Figure 2 – An illustration of the Hough transform 

 
For an image with intensity value I(x,y) at point (x,y), the 

most significant straight line in polar-form )ˆ,ˆ( �r can be 

extracted as: 
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where L(r,θ) represents all the image points that lie on a 
particular line (r,θ). 

If we view the time-frequency spectral space of a speech 
signal as an image plane, it is expected that the HT can help 
to extract more salient features that would not be possible 
with short-time spectral analysis only. There are a number of 

ways that the HT extracted line parameters )}ˆ,ˆ(,ˆ,ˆ{
�

rAcc
�

r  

can be incorporated into ASR front-end processing. In this 
work, we investigate the possibility of using the maximum 

line accumulation )ˆ,ˆ(
�

rAcc  to derive a masking threshold 

for improving noisy speech recognition. 
Masking is an important aspect of human audition in 

which the presence of one sound can raise the hearing 
threshold of another sound. Masking is particularly relevant 
to robust ASR front-end processing as it can help to discount 
the effects of noise on a speech signal. There are two types of 
masking in the literature, namely, frequency masking and 
temporal masking [7]. Frequency masking emphasizes the 
formant regions of a speech signal in the spectral domain, 
while temporal masking helps to filter out those signal 
components which change too slowly or too rapidly.  In this 
work, the novel use of HT to derive a masking threshold for 
simultaneous frequency and temporal masking is 
investigated.  

With the incorporation of HT based masking (HTM) and 
the addition of time index (t) to the notation, the log Mel-
filterbank output of a frame of speech signal at time t is then 
given by: 
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where λ is a constant to control the degree of masking,  n is 
the number of points on the extracted line and Tw is the width 
of an image formed by the past Tw frames of the Mel-
filterbank outputs.  

Once a frame of log Mel-filterbank outputs has been 
masked, discrete cosine transform (DCT) can then be applied 
to the masked outputs to obtain the corresponding MFCCs. 

2.2 Cumulative Distribution Mapping 

The cumulative distribution mapping (CDM) method 
described here is based on the use of histogram equalization 
(HE) originally developed for improving the contrast of an 
image [8]. The use of the HE method for compensating 
handset mismatch in front-end processing of speech can also 
be found in [9].  The details of our implementation of the 
CDM can be found in [10]. The main idea of this method is 
to map the distribution of a time sequence of noisy speech 
features into a target distribution with a pre-defined 
probability density function (PDF). In our case, it is assumed 
that for a given feature value vo, the mapping is derived from: 

 � �−∞= −∞=
=

o ov

v

z

z
dzzhdvvf )()( ; or  Fv(vo) = Fz(zo)  (5) 

where Fv(v) is the corresponding cumulative distribution 
function (CDF) of a given set of noisy speech features and 
Fz(z) is the target CDF, f(v) and h(z) are the respective PDFs. 
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From equation (5), the required mapping would be: 

 zo = Fz
-1[Fv(vo)] (6) 

Typically, h(z) is assumed to be a Gaussian with zero mean 
and unity variance. In the experiments, CDM is applied only 
to the static feature vector which consists of 13 MFCCs (C0 ~ 
C12) and each cepstral coefficient is normalized individually 
on a per-utterance basis. 

3. EXPERIMENTAL RESULTS 

The proposed front-end has been evaluated on the Aurora II 
database [11] with various configurations. This database 
contains noisy connected digits (spoken by American adults), 
which were created by adding various types of noises at 
different signal-to-noise ratios (SNR) to the original clean 
(i.e. high SNR) utterances. There are three test sets in the 
database. Test set A contains speech utterances with 
“subway”, “babble”, “car”  and “exhibition” types of noises, 
while test set B contains speech with “restaurant” , “street” , 
“airport”  and “train station”  types of noises. Test set C 
contains only “subway” and “street”  types of noises but there 
are channel distortions as well. Each of the test sets A and B 
has about 28K utterances and the test set C has about half of 
that number. 

3.1 Experimental Setup 

All pre-processing and Mel-filtering of speech signals 
followed the ETSI standard MFCC front-end, except that C0 

was used instead of log-energy. There were 23 Mel-
filterbanks (M = 23) and the static feature vector of our front-
end consisted of 13 MFCCs (C0 ~ C12). The static feature 
vector after noise compensation was appended with its 
corresponding 1st-order and 2nd-order time derivatives to 
form a resultant vector with 39 coefficients for speech 
recognition at the backend. Each recognition model was 
represented by a continuous density hidden Markov model 
(HMM) with left-to-right configuration. Digit models had 16 
states with 3 Gaussians per state, while the noise model had 3 
states with 6 Gaussians per state. All HMMs were trained 
from a set of 8440 clean utterances which is not included in 
the test sets. 

3.2 Results and Discussion 

The official Aurora evaluation framework [11] was followed 
in that average recognition accuracy for each test set is 
calculated from the recognition results for those test data 
with SNRs from 0 dB to 20dB. When the ETSI standard 
MFCC front-end was used, the average digit accuracy for the 
test set A was found to be 61.34%. If the log-energy (logE) in 
the ETSI MFCC front-end was replaced with C0, the average 
digit accuracy for the same test set was degraded to 58.89%. 
Although the use of C0 was found to be less robust than the 
use of log-energy when there is no noise compensation, it 
was used in the experiments as it can provide better accuracy 
when used with CDM. With only the incorporation of HTM 
(λ = 0.05, Tw = 7 and without CDM) into our front-end, the 
average digit accuracy was improved to 64.98% from 

58.89% [12]. As a baseline here, our front-end with CDM 
only (without HTM) achieved an average digit accuracy of 
81.67% for the test set A. 

When both HTM and CDM were incorporated into the 
front-end, some better recognition results for the test set A as 
shown in Table 1 were obtained. This table also summarizes 
the effects of varying the degree of HT masking (λ) and the 
image width (Tw) on the recognition accuracy. As observed 
from the table, λ = 0.05 and Tw = 7 provided the best 
recognition accuracy at 83.67%. This accuracy represents a 
relative error rate reduction of 57.8% when compared with 
the accuracy of the ETSI front-end (61.34%). Moreover, it 
can be observed that the use of HTM together with CDM 
provided additional improvement in accuracy over the use of 
CDM only (83.67% vs. 81.67%). From the results, it seems 
that the recognition accuracy is less affected by the setting of 
the image width, but more sensitive to the degree of masking. 

Table 1 - Average digit accuracies (%) for Aurora test set A, 
proposed front-end with various settings for HTM 

Image Width (Tw) Degree of 
Masking (λ) 5 7 9 

0.5 79.83 80.23 80.34 

0.1 82.64 82.80 82.66 

0.07 83.09 83.30 83.21 

0.05 83.15 83.67 83.46 

0.03 83.28 83.26 83.57 

0.01 82.57 82.53 83.08 

 
The setting λ = 0.05 and Tw = 7 was used to perform 

further evaluation for the test sets B and C, and the results are 
summarized as shown in Table 2. From the table, it can be 
observed that the proposed front-end outperforms the ETSI 
standard MFCC front-end for all the three test sets. The 
proposed front-end is found to achieve higher improvement 
in accuracy for the test set B, but marginally lower 
improvement for the test set C, probably due to the inclusion 
of channel distortions in the test set C. Nevertheless, the 
average accuracy across the test sets obtained by the 
proposed front-end represents a relative error rate reduction 
of 57.1% when compared with that of the ETSI front-end 
(83.31% vs. 61.08%).  

Table 2 - Average digit accuracies (%) for Aurora test sets, 
proposed front-end compared with ETSI standard MFCC front-end 

Front-end Test A Test B Test C Avg. 

ETSI (logE) 61.34 55.75 66.14 61.08 

Proposed* 83.67 85.25 81.00 83.31 

* λ = 0.05 and Tw = 7 
 

To get an insight on how the combined HTM/CDM 
front-end is performing in different noise conditions, a break-
down of the recognition results according to individual SNR 
levels and averaged across all three test sets for the front-end 
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configuration λ = 0.05 and Tw = 7 is shown in Figure 3. From 
the figure, it can be observed that the proposed front-end 
achieves better recognition accuracy than that of the ETSI 
standard front-end at every SNR level. At 5dB SNR, the 
average accuracy obtained by the proposed front-end is about 
double that of the ETSI front-end. 
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Figure 3 - Recognition results for the Aurora test sets, proposed 
front-end compared with ETSI standard MFCC front-end by SNR 

 
Figure 4 shows the average recognition results for the 

test set A according to the noise types. It can be observed that 
overall the biggest improvement is obtained for the “babble”  
type noisy speech, while the best absolute accuracy is 
obtained for the “car”  type noisy speech, by using the 
proposed front-end (λ = 0.05 and Tw = 7).   
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Figure 4 - Recognition results for Aurora test set A, proposed front-
end compared with ETSI standard MFCC front-end by noise type 

 
Similarly, the recognition results by noise type for the 

test sets B and C are also shown in Figure 5. Note that the (C) 
following the name of a noise type in the figure denotes 
speech data from the test set C which also contains additional 
channel distortions. Again it can be observed from Figure 5 
that the proposed front-end outperforms the ETSI standard 
front-end for all the different types of noisy speech in these 
two test sets. The comparatively lower improvement in 

recognition accuracy for the test set C indicates that an 
additional algorithm for compensating channel distortion 
more effectively is required. 

Overall these two figures demonstrate that the proposed 
front-end is much more consistent and robust than the ETSI 
standard MFCC front-end in recognizing different types of 
noisy speech. 
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Figure 5 - Recognition results for Aurora test sets B and C, proposed 
front-end compared with ETSI standard MFCC front-end by noise 
type 

4. CONCLUSION 

A new and noise robust front-end based on the combined 
incorporation of Hough transform based masking and 
cumulative distribution mapping has been proposed. 
Experimental results on the Aurora II speech database have 
revealed the effectiveness of the novel front-end. The 
proposed front-end achieves an average digit accuracy of 
83.31% for the three Aurora test sets. Future research will 
focus on the use of other Hough transform extracted line 
parameters as components of a feature vector, the 
incorporation of a more effective algorithm for compensating 
channel distortion, and the use of a different target CDF for 
the cumulative distribution mapping. 
 

REFERENCES 

[1] Huang, C., Wang, H. and Lee, C., “An SNR-
Incremental Stochastic Matching Algorithm for Noisy 
Speech Recognition” , IEEE Trans. Speech and Audio 
Processing, Vol. 9, No. 8, Nov. 2001, pp. 866-873. 

[2] Ephraim, Y., “A Bayesian Estimation Approach for 
Speech Enhancement Using Hidden Markov Models” , 
IEEE Trans. Signal Processing, Vol. 40, No. 4, April 
1992, pp. 725-735. 

[3] Sankar, A. and Lee, C.H., “A Maximum Likelihood 
Approach to Stochastic Matching for Robust Speech 
Recognition” , IEEE Trans. Speech and Audio 
Processing, Vol. 4, May 1996, pp. 190–202. 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



[4] Zhang, Z. and Furui, S., “Piecewise-linear 
Transformation-based HMM Adaptation for Noisy 
Speech” , Speech Communication, Vol. 42, Issue 1, Jan. 
2004, pp. 43-58. 

[5] ETSI, “Speech Processing, Transmission and Quality 
Aspects (STQ); Distributed Speech Recognition; 
Front-end Feature Extraction Algorithm; Compression 
Algorithms” , ETSI Standard Document ES 201 108, 
April 2000. 

[6] Vernon, D., Machine Vision: Automated Visual 
Inspection and Robot Vision, Prentice Hall 
International (UK), 1991. 

[7] Zhu, W. and O’Shaughnessy, D., “ Incorporating 
Frequency Masking Filtering in a Standard MFCC 
Feature Extraction Algorithm”, in Proc. Int. Conf. on 
Signal Processing, ICSP’04, Sept. 2004, pp. 617-620. 

[8] Russ, J.C., The Image Processing Handbook, CRC 
Press, 1995. 

[9] Dharanipragada, S. and Padmanabhan, M., “A 
Nonlinear Unsupervised Adaptation Technique for 
Speech Recognition” , in Proc. Int. Conf. on Spoken 
Language Processing, ICSLP’00, Vol. 4, Oct. 2000, 
pp. 556-559. 

[10] Choi, E., “Noise Robust Front-end for ASR using 
Spectral Subtraction, Spectral Flooring and Cumulative 
Distribution Mapping” , in Proc. 10th Australian Int. 
Conf. on Speech Science and Technology, Dec. 2004, 
pp. 451-456. 

[11] Hirsch, H.G. and Pearce, D., “The AURORA 
Experimental Framework for the Performance 
Evaluation of Speech Recognition Systems under 
Noise Conditions” , in Proc. ISCA ITRW ASR2000, 
Sept. 2000, pp. 181-188. 

[12] Choi, E., “A Noise Robust Front-end for Speech 
Recognition Using Hough Transform and Cumulative 
Distribution Mapping” , in Proc. Int. Conf. on Pattern 
Recognition, ICPR’06, Aug. 2006, to appear. 

 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


