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ABSTRACT

In this paper, we present a specific algorithm for the blind
identification of a two input two output system. A closed
form solution for the blind identification of the system is de-
rived by exploiting the temporal coherence properties of the
input sources. By exploiting the inherent indeterminaciesof
the blind processing, a simplified version is derived making
the algorithm computationally cheaper and more suitable for
hardware implementation. The weights of the zero forcing
blind separator are then deduced. The performance of the pro-
posed solutions with respect to the signal to noise ratio (SNR)
and sample size are provided in the simulation section.

1. INTRODUCTION

Blind source separation (BSS) problem consists of identify-
ing a linear system whose only output is observed. When an
array of sensors samples the fields radiated by narrow band
sources its output is classically modelled as an instantaneous
spatial mixture of a random vector whose components are the
source signals, possibly corrupted by additive noise. Source
separation may be obtained by first identifying the directional
vectors associated to each source and then by projecting the
array signal onto the estimated vectors. This is a standard
program in array processing except that inblind source sepa-
ration problem we perform system identification without re-
sorting to the knowledge of the array manifold. Hence, blind
source separation is essentially unaffected by errors in the
propagation model or in array calibration.

When the specifications of a blind identification problem
are known in advance, e.g. number of sensors and sources in-
volved. One can design specific BSS algorithms for the prob-
lem at hand. In this case, closed form solutions become possi-
ble. In particular, the two-input two-output case has attracted
a lot of attention in the literature, e.g. [3, 4, 5, 6], due to its
simplicity and its numerous potential applications.

Note that such solutions are more suitable for hardware
implementation where iterations are often avoided. It is well
known that in VLSI implementation, divisions and square

roots are more complex to implement than multiplications
and require more space and time resources [1, 2]. Hence, a
challenge is to provide a solution to the BSS problem that
does involve a minimum of division and square root compu-
tations. We show in this paper how we can take advantage of
the inherent indeterminacies of the BSS problem to meet this
challenge. Herein, we propose closed form solutions for the
blind identification of a two input two output system together
with its zero forcing separator by exploiting the temporal co-
herence of the source signals.

2. PROBLEM FORMULATION

2.1. Signal model

Consider an array of2 sensors receiving signals from2 nar-
row band sources. The array output denotedx(t) is a2 � 1
random vector. Corrupted by additive white noise denotedn(t), it is classically modelled as:x(t) = y(t) + n(t) =Hs(t) + n(t) (1)

wheres(t) is a2 � 1 vector whosep-th component denotedsp(t) is the signal emitted by thep-th source. The2�2matrix:H = � h11 h12h21 h22 �
is assumed to have full rank but otherwise unknown. The
source signals are temporally colored second order stationary,
mutually uncorrelated processes.

The purpose of source separation is to recover the source
signals from the array outputx(t) without knowledge of the
mixture matrixH. The benefit of such a ‘blind’ approach is
that source separation is essentially unaffected by errorsin the
propagation model or in array calibration. Source separation
techniques based on second order statistics require only the
main assumption of uncorrelated source signals. The additive
noisen(t) is assumed to be spatially and temporally white
and uncorrelated with the source signals.
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2.2. Concept of blind identifiability

In blind context, complete identification of the mixture matrixH is impossible as shown by the following relation:x(t) = Hs(t) + n(t) = 2Xp=1 hp�p�psp(t) + n(t) (2)

where�p 2 IR andhp denotes thep-th column ofH. Hence,
the exchange of a fixed scalar factor between a source signal
and the corresponding column ofH leaves the observations
unaffected.

Advantage can be taken of this indeterminacy, without
any loss of generality, by assuming unit variance source sig-
nals, so that the dynamic range of the sources is accounted for
by the magnitude of the corresponding column ofH. Conse-
quently, blind identification ofH is understood as the deter-
mination of a matrix equal toH up to permutation (which
comes from the fact that the source numbering is arbitrary)
and diagonal matrices. The crucial point is that these indeter-
minacies do not impede source separation. If the mixture ma-
trix H is estimated up to permutation and diagonal matrices,
it still allows to determine the source signals up to the corre-
sponding fixed permutation and scalar factor. In the sequel,
we exploit these indeterminacies to derive a BSS algorithm
free from divisions.

3. THE PROPOSED SECOND ORDER BLIND
IDENTIFICATION SOLUTION

Consider the following sampled version of the data model (1),x(n) = Hs(n) + n(n); s(n) = [s1(n) s2(n)℄T : (3)

In the above expression,x(n), n(n) ands(n) are the sampled
version ofx(t), n(t) ands(t), respectively, where we have
omitted to specify the sampling rate for ease of notation.T denotes the transpose operator.

The correlation matrices ofx(n) are given by,Rx1x1 = h211Rs1s1 + h212Rs2s2 + �2I (4)Rx2x2 = h221Rs1s1 + h222Rs2s2 + �2I (5)Rx1x2 = h11h21Rs1s1 + h12h22Rs2s2 (6)

wherex(n) = [x1(n) x2(n)℄T , I is theN�N identity matrix,
andRxixj ; i; j = 1; 2 is defined byRxixj = E([xi(1); � � � ; xi(N)℄T [xj(1); � � � ; xj(N)℄) (7)E(:) being the expectation operator andN is some chosen
window length1. The above expressions are derived under the
assumptions of Section 2.1.

1We chooseN as a power of2 so that a division byN becomes a simple
bit shifting.

Let us define the operatorsoff(:) andtr(:) byoff(M) = Xi6=j Mij (8)tr(M) = 1N Xi Mii (9)

whereM is any square matrix of dimensionN �N andMij
are the entries ofM. By applying these operators to equations
(4), (5) and (6), we get the following set of relations,F1 = off(Rx1x1) = h211R1 + h212R2 (10)F2 = off(Rx2x2) = h221R1 + h222R2 (11)F12 = off(Rx1x2) = h11h21R1 + h12h22R2 (12)T1 = tr(Rx1x1) = h211 + h212 + �2 (13)T2 = tr(Rx2x2) = h221 + h222 + �2 (14)T12 = tr(Rx1x2) = h11h21 + h12h22 (15)

whereRi = off(Rsisi); i = 1; 2. In (13), (14) and (15),
we have used the fact that, under unit-variance assumption,tr(Rsisi) = 1; i = 1; 2.

By solving equations (10)-(15), we obtain the following
expressions of the mixing matrix entries,h11 = sF1 � (T1 � �2)�
 (16)h22 = s (T2 � �2)�� F2
 (17)h12 = T12�� F12
h22 (18)h21 = F12 � T12�
h11 (19)

where � = a+ 
b� = a� 
b
 = 2
b
witha = 2F12T12 � (F11(T22 � �2) + (T11 � �2)F22) (20)b = 2(T 212 � (T11 � �2)(T22 � �2)) (21)
2 = (F11(T22 � �2)� (T11 � �2)F22))2 + 4(F12(T22��2)� T12F22)(F12(T11 � �2)� T12F11): (22)

An estimate of the noise variance�2 is needed for a ro-
bust estimation of the channel coefficients. It can be ob-
tained by the eigen-decomposition of the data covariance ma-
trix [7] if a third sensor is available. Otherwise,�2 can be es-
timated using only two sensors before data recording begins.
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Another alternative is to estimate�2 by choosing the value
that minimizes in the least squares sense w.r.t.�2 the inter-
correlation at different time lags between the two outputs ofH(�2)�1x(t). This solution is not considered here as it in-
creases the cost of the proposed algorithm. Note that in prac-
tice, the temporal correlation matrices of the data are replaced
by their time-averages. To track possible non-stationarity,
these temporal correlation matrices can be estimated adap-
tively using e.g. an exponential memory.

Remark: It is clear from equations (10) to (12), that for
sources with identical spectral shapes (i.e.R1 = R2), these
equations are reduced to equations (13) to (15). Subsequently,
the latter become insufficient to solve the identification prob-
lem. In this case, one has to use higher order blind identifica-
tion techniques [8, 9, 10].

4. A SIMPLIFIED SECOND ORDER BLIND
IDENTIFICATION SOLUTION

In this section we take advantage of the inherent indetermina-
cies of the blind source separation problem stated in Section
2.2 to further reduce the computational load of the proposed
solution by eliminating all the division operations. Thesesim-
plifications should allow an adequate architecture of the pro-
posed algorithm when implemented on hardware devices (e.g.
FPGA, ASIC).

Let us rewrite expressions (16) to (19) of the mixing ma-
trix entries in the following form,H = 0B� qF1�(T1��2)�
 (T12��F12)p

p(T2��2)��F2(F12�T12�)p

pF1�(T1��2)� q (T2��2)��F2
 1CA (23)

By taking advantage of the inherent indeterminacies of the
blind processing, a new solution to the blind identificationof
the mixing matrix is obtained by multiplying matrixH with
the following diagonal matrix0� 
bqF1�(T1��2)�
 00 �
bq (T2��2)��F2
 1A : (24)

This leads to the following solutionHs = � bF1 � (T1 � �2)d1 bF12 � T12d2bF12 � T12d1 bF2 � (T2 � �2)d2 � (25)

whered1 = a � 
 andd2 = a + 
. Note that the obtained
solution does not involve any division operation and reduces
in the same time the number of square root operations needed
for the channel identification.

5. SOURCE SIGNAL RECOVERY

In this Section, our objective is to determine the weights of
the spatial filter W = � w11 w12w21 w22 � (26)

to achieve our task of source signal recovery. Several mini-
mization and maximization criteria can be used to optimize
the weights of the spatial filter [11]. This includes the maxi-
mization of signal to interference and noise ratio, and linearly
constrained minimum variance of the filter output. Herein,
we compute the zero forcing spatial filter which maximizes
the signal to interference (SIR) at the output of the filter. Tak-
ing into account the inherent indeterminacies of blind source
separation, the zero forcing solution is given byWH = PD
whereP andD are a permutation matrix and a diagonal ma-
trix, respectively. A solution to (26) is given byW = � h22 �h12�h21 h11 �

(27)

where thehij are computed either from expression (23) or
from expression (25), according to the chosen solution.

6. SIMULATION RESULT

We first present a sample run of the proposed solutions: Two
speech signals sampled at 8000 Hz are mixed by the following
matrix, H = � 1:0 1:01:0 0:8 � : (28)

The plots of the two individual speech signals and their ob-
served mixtures are shown in Figure 1. The separated sources
are plotted in Figure 2, where the SOBI algorithm [7] is used
for the purpose of comparison. It is clear that the proposed
BSS solutions work well in this case and give for this sample
run similar result as the SOBI algorithm.

Next, we access the performance of the proposed solu-
tions through Monte Carlo runs. The performance is char-
acterized in terms of signal rejection. After blind identifi-
cation, the estimated source signals areŝ(t) = Ŵx(t) =ŴHs(t) + Ŵn(t) whereŴ is an estimate of the spatial
filter matrix. The matrixP̂ defined byP̂ = ŴH should
be close to some permutation matrix times a diagonal matrix
(permutation and scale indeterminacies). Thep-th estimated
source signal is : ŝp(t) = Xq=1;n P̂pqsq(t) (29)
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Fig. 1. Example of mixed speech signals.

and contains the q-th source signal at leveljP̂pqj2jP̂ppj2 . A measure

of the global quality of a separation is the overall rejection
level: Iperf def= Xq 6=p jP̂pq j2jP̂ppj2 (30)

where we have assumed for convenience thatP̂ is close to
diagonal rather than to some other permutation matrix.

In our performance study, we consider two sources mixed
by the matrix of equation (28). The additive gaussian noise
has covarianceRn = �2I. The source signals have unit vari-
ance and each one is generated by filtering a white Gaussian
process by two different auto-regressive models. The over-
all rejection level is evaluated over 500 realizations. In these
simulations, the proposed solutions assume no noise (i.e. in
equations (16) to (19) and (25),�2 is set to zero).

In Figure 3, the rejection levelIperf is plotted in dB against
Signal to Noise Ratio (SNR) in dB for a sample size of512. In
Figure 4, the Signal to Noise Ratio (SNR) is kept constant at30 dB. The curves show the rejection levelIperf in dB plotted
against the sample size.

Plots of Figures 3 and 4 show significant increase in per-
formance for a sufficient number of samples and high SNR.
Also, one can observe that the proposed solution and its sim-
plified version have similar performance. When compared
with the SOBI algorithm, one observes a loss of2 dB in
performance but a significant saving in the computation cost
since in contrast to the proposed solutions, the SOBI algo-
rithm involves eigen decomposition for the whitening process
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Fig. 2. A sample run on speech signals.
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Fig. 3. Mean rejection level vs SNR.
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Fig. 4. Mean rejection level vs Sample size.

and computation of the Givens rotations for the joint diago-
nalization process [7]. Hence, the traditional tradeoff that we
often have between the achievable performance and the sim-
plicity in the implementation.

7. CONCLUSION

In this paper, we have proposed a direct solution to the spe-
cific problem of the blind separation of two sources from two
sensors using second order statistics. We have shown how,
by exploiting the indeterminacies of the BSS problem, one
can simplify the proposed closed form solution to provide a
simple solution with no division operations. Such solutional-
lows adequate architectures when implemented on hardware
devices.
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