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ABSTRACT

In this paper a lossless compression technique for Bayer
pattern images is presented. The common way to save these
images was to colour reconstruct them and then code the full
resolution images using one of the lossless or lossy methods
This solution is useful to show the captured images at once,
but it is not convenient for efficient source coding. In fact,
the resulting full colour image is three times greater thhea t
Bayer pattern image and the compression algorithms are not
able to remove the correlations introduced by the recortstru
tion algorithm. However, the Bayer pattern images present
new problems for the coding step. In fact, adjacent pixels
belong to different colour bands mixing up different kinfls o
correlations. In this paper we present a lossless compoessi
procedure based on an optimal vector predictor, where th
Bayer pattern is divided into non-overlapp2d 2 blocks,
each of them predicted as a vector. We show that this sol
tion is able to exploit the existing correlation giving a gbo
improvement of the compression ratio with respect to othe
lossless compression techniques, e.g., JPEG-LS.
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Figure 1: Bayer pattern used in the paper.

Sion step, and only Nikon proposes a visually, but not nu-
merically, lossless coder called NEF (Nikon Electronic-For
Li‘hat). This solution satisfies the user requirement, butdimi
the number of pictures which could be saved into the flash
fnemory card of the camera. Besides, if we consider the cost
of this kind of memory, the need of a good lossless compres-
sion technique is gaining importance day by day.

1. INTRODUCTION In literature, the first works on this issue were developed
Most digital cameras produce colour images using a singlby S. Lee and A. Ortega in [2] and C.C. Koh and S.K. Mitra
CCD sensor provided by a colour filter array (CFA). In thisin [3]. The first paper proposes that the compression step
way, adjacent pixels capture the light intensity value éf di is placed before the colour reconstruction algorithm. The
ferent colour bands, and a full colour image is obtained by authors propose an image transformation algorithm to reduc
colour interpolation step which reconstructs the missialg v the existing redundancy in a CFA image and then they code
ues. the transformed image using JPEG.

The Bayer pattern, presented by Bayer in [1], is the most  Mitra et al propose new image transformations to be ap-
popular and used colour filter array (CFA). It uses a rectanplied to the Bayer image before the JPEG compression step.
gular grid for the red and blue bands and a quincunx grid forhey code the red and blue bands without any transforma-
the green band, as shown in Fig. 1. The choice of capturingt@on because these bands have a rectangular array suitable
number of green pixels twice as high as the red and the bluer JPEG. The transformations are applied only on the green
bands is justified by the fact that the Human Visual Systenibband where a quincunx sampling is used. They propose two
(HVS) places more emphasis on the green rather then on timethods: the first uses a diamond filter with a 2-D impulse
red and blue components. response and then the data is separated into odd and even

The common way to manage the Bayer pattern imagesomponents independently coded. In the second method the
is to colour reconstruct them, applying automatic white bal columns of the quincunx array are collapsed into a compact
ancing and other colour corrections, and then compress tharay. This operation creates false high frequencies ih bot
resulting images. This workflow is effective for most dig- the horizontal and vertical directions. To reduce this affe
ital camera users, but the professional photographers d#ie quincunx data has been thought as two interlaced frames
mand for custom post-processing of the captured images. Taf a scene, so through the process of deinterlacing a smooth
achieve this requirement, the professional digital phatoc image is obtained.
eras allow for saving the raw sensor data without any post- Unfortunately, these approaches introduce some loss. A
processing step. This option permits the advanced user tossless compression algorithm for the color mosaic images
apply high-complexity high-quality demosaicing algonits  is proposed by N. Zhang and X. Wu in [4]. They use the
during a post-processing step. Until now, each captured inifting integer wavelet to decorrelate the mosaic data both
age has been saved in a RAW format without any compresn spatial and spectral domains. Then the integer transform
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Using a raster scan order, one solution to this problem
; . ; i i ould be given by the set of pixels having Manhattan distance
Eﬁﬁ;eci'rrging]r?gan distance (MD) of the neighbour plxeIs(s:maller than a fixed threshold (see Fig. 2). Lep(x,y) be
the pixel value at positiofk, y), then the prediction seiﬂ)}y
. . of this pixel is given by: '
coefficients are coded by a simple context-based Golomb-
Rice coding scheme. 2L ={px—ky—j): (k)€ Nk +]j| < Ts}
Our approach uses a DPCM mechanism to decorrelate '
the mosaic colour images, where the optimal prediction igvhere
estimated using the causal adjacent pixels given by a raster_, ; . ; P
scan order. However, the Bayer pattern images are not con-dk" ={keZ jeNot (k€ Z,]>0)v(k>0.]=0)}.
sidered as grayscale images, but as non-overlapped bleck i j, Ng andZ are the sets of the previous causal pixel, of
ages where each block contains two green, one red and otiee natural and of the integer numbers, respectively.
blue samples. For each prediction step we estimate an image The threshold valug fixes the predictor order, so if it is
block (i.e., four image adjacent samples) using the optimahigh the prediction sefs, has an high cardinality, and we
vector prediction theory. In this way, our predictor is able have an high-order predictor. This solution works well if we
to exploit both the spatial and spectral correlation and usepredict a natural image where there are smooth changes of
them to improve the prediction performance (reducing théuminance value, but for synthetic images this solutionsdoe
prediction error entropy). not work well because the luminance could change in strange
The paper is organized as follows. Section 2 present@nd unpredictable) ways. On the other hand, if the threshol
the proposed coding scheme, and its experimental reselts as too low, we obtain a low order predictor which works well
shown in Section 3. In Section 4 we report the conclusion 0bn the edges, but not so well on smooth region.
this work. To predict the pixelp(x,y) we use the previous coded
pixels according to the scan order introduced in Fig. 2.
2. PROPOSED ALGORITHMS The optimal prediction coefficientsy,x are adaptively

. . . . computed solving the linear system
In one-dimension thetorder one-step linear predictor of a P 9 y

signalx at timen is given by Rxywxy = Roxys 1)

m _ whereRyy is an estimate of the autocorrelation matrix, and
X(n) = ZWiX(n —1) Roxy is a correlation vector. At the end, the predicted pixel
i= p(x,y) is computed according to

wherex(n—i) are past observations of the signal, andire R m
the prediction coefficients. PX,Y) = Wayk Pryk )
The predictor is calledptimal if the prediction coeffi- k=1
cientsw; minimize the energy of the prediction error: wherepyyk € gz)'(l'sy _ _ .
m To compute the optimal predictor, the autocorrelation
o ; matrix is needed. We estimate it using the covariance method
e(n) =x(n) —X(n) =x(n) — Y wix(n—1). o : ,
(M) =x(m) = X(m) =x(m) i; X( ) taking into account only the actual coded pixels. In this way

the estimate of the autocorrelation matrix for the pixel@t p
From the orthogonality principle, this condition is veri- sition (x,y) is given by

fied if and only if the prediction error is orthogonal to the yoil 1 .
Ryy = 20 ;a\xfk\f\yfi\Ak’j + ;G‘X7K‘Ak’y, 3)
2.1 Optimal Scalar Prediction (OSP) j=0k= K=

past signal observations.
For image prediction we must address a two-dimensiondtnd the vectoRoxy by
problem. The first issue is to define the set of the neigh-

. . - ; y-1L-1 ) x—1
bour (causal) pixels which define the previous samples of the g, Xy = alK=y=il A i+ z a KA, ky, (4)
optimal predictor. ” ,Zok; 7 & o
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wherelL is the width of the image, and is an empirical To predict the pixel vectop(x,y) we use the previous
weight introduced to decrease the influence of the farthestoded pixel vectors according to the scan order introduted i
pixels from the current positiofx, y). Fig. 2.
To build up the matrixAyy and the vectoAgyy we de- To estimate the autocorrelation matrix we write the vec-
fine the vectopyy as tor of the causal block as
— — — t
Pxy1 Pxy = [Pbxy1 Pbxy2 *** Pbxym| » ()
Pxy,2 _ . -
Pxy = . , (5)  wheremis the cardinality of the prediction set. Frasy the
1 two matricesAyy andAgyy are computed according to
Pxy,m
: Axy= ; 8
where the componenfsy1, ..., Pxym belong to the predic- Xy = PxyPxy _ _ ®
tion set 25, andm is the order of the predictor, i.e., the Axy11 Axyiz - Axyim
cardinality ofﬁ)}y. | A2 Axy22 - Axyam
Frompyy, the matrixAyy and the vectoAqxy are com- N : : : : ’
puted according to Avymi Axymz -+ Axymm
Axy = PxyPxy — t
5 Aoxy = [Pb(X,Y)Pxy] 9)
Piy.1 Pxy1Pxy2 - Pxy1Pxym
PyiPryz  Brya 0 Pry2Peym = [ RayPxy | GroyPxy | GoxyPxy | BxyPxy |,
- : _ : ’ where Ayy is a block symmetric matrix, but not block
' ' 2 Toeplitz. Each blockAyy;; represents the existing spa-
Pry1Pxym  Pry2Pxym Pcym tial and spectral correlation between the two pixel vectors
(xy) pb(XY,i) andpy(X,Y, j) which belong to the prediction set.
P x,y Pxy.1 The estimate of the autocorrelation matRyy and of
Aoxy = PX.Y)Pry = PX.Y)Pxy2 matrix Roxy is made as in (3) and (4), respectively. In opti-
Oxy 1T : ’ mal vector theory, the prediction block coefficiemts, x are
P(X,Y) Pxy.m 4 x 4 matrices which are adaptively computed solving the
) ) N o . linear systems
whereAyy is a symmetric positive definite matrix, but not a RxyWxy = Roxy, (10)
Toeplitz matrix. ' ’ .
where
2.2 Optimal Vector Prediction (OVP) Wxyl
W
To extend the linear prediction to the vector case we divide Wyy = X2 ,
the Bayer pattern image into non-overlapping 2 blocks ' :
considering the pixels belonging to each block as the com- Wyxy,m

ponents of a single pixel vector. The resulting block image
has a dimension equal tg/2 x H /2 whereL andH are the and the predicted pixel vectpk, (x,y) is computed according
width and the height of the original image, respectivelye(se 0 m
Fig 3). p(X,y) = T

Each block is composed by two green, one red and one p(xY) k;Wx,y,k Pbxyk an
blue pixels. To distinguish the two green pixels we denote
with G; and Gy, the green samples which belong, respec-
tively, to the odd and to the even rows of the Bayer patter

To summarize, for each prediction the following steps
Ilpave to be performed:

reported in Fig. 1. 1. update the vectgsyy (7), and the two matriceAyy (??)
Let pp(x,y) be the vector of the block at positigr, y) andAoxy (9);
2. estimate the.autocorrelation matRxy (3), and the cor-
Pb(X,y) = [vay Grxy Gbxy vay] , (6) relation matrixRo xy (4);

3. invert the autocorrelation matrRyy to obtain the pre-
where the coordinatéx,y) refers to the block and not to the diction coefficient vector
pixel position.
To predict this vector we use the causal blocks having Wiy = (Rx,y)’lRovxvy; (12)
Manhattan distance smaller or equal than a fixed threshold
Ty. Accordingly, the prediction set is given by 4. calculate the predicted pixel veciog (x,y) by (11).

QT" ={po(x—ky—j):1(kj) € AIK+]]|<T} To reduce the complexity of the second step we use the ma-
' trix update method introduced by [5], where the high compu-
where j is the set of the causal blocks in raster scan ordetational cost problemis turned to a high memory requirement
In_this paper, we consider a single thresh@jd= 2 hav-  problem. To calculate the inverse matrixRfy we use the
ing ﬁxy as prediction sets with a block cardinality equal toCholesky factorization obtaining a computational cosiord
SiX. equal toc/((4m)3/6).
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rle] | ‘JPEG_LS ‘ the Bayer pattern images. As said in [4], this result is due to
/ S \ the reversible 5-3 integer discrete wavelet transform twvhic
Z ‘: Z : 2 Z < de-correlates the mosaic data both in the spatial and spectr
S —s] — ‘JPEG—LS‘ domains.
clefels s For the optimal scalar predictor we used two different
\ Hi‘ . ‘ JPEG-LS ‘ / thresholdsls = {2,3} and the corresponding prediction sets
B |B

9}?,’3} have cardinality equal to 6 and 12, respectively. On

i i the other hand, for the optimal vector predictor we fixed the

Figure 4: JPEG-LS applied on the three colour componentsreshold equal to 2T( = 2) obtaining a prediction se¥2,

obtained by a Bayer pattern splitting. having a block cardinality equal to 6 where each block con-
sists of four pixels. The thresholds for the OSP algorithm
are selected considering that with= 2 the scalar and the

The pixel vector valupyy is then coded through an arith- vectorial predictor have the same threshold value, and with
metic binary coder in bit-plane mode starting from the MSBTs = 3 the two coders have the same complexity.
down to the LSB, and the zero’s probability is computed The OVP coder works better than the OSP codgys=(2

modelling the prediction error andTs = 3) because it organizes the pixels into a well-defined
_ . structure where both the spatial and the spectral coroelsti
exy = Pxy — Pxy are exploited. On the other hand, in the OSP coders, the

raster scan over a Bayer pattern image implies a repetitive
) exchange between the position of the spectral and the kpatia
pixel value [5]. _ _correlation inside the prediction vectpgy and then inside
Since each frame is extended to a constant value OUtS"fﬁe estimate of the autocorrelation matrix used to caleulat
e prediction weights. For this reason, the structure ef th
OVP coder leads to higher compression ratios. However, it
is worth to note that the OSP coders applied to the Bayer
pattern images achieve better results with respect toragppli
3. RESULTS independently the same algorithms to the Bayer splitted im-
We tested our algorithm using the reference Kodak set im@ges. This results lead us to conclude that also the OSP
ages, and the three test images caMdman Bike and coder_s_epr0|ts both spectral and spatial correlationsbt
Monarch These images have a 24-bit colour representatiors efficiently as the OVP coder.
and were sampled according to the Bayer pattern shown in Finally, we compare the proposed optimal vector predic-
Fig. 1. tion algorithm with respect to other lossless coders pitesen
We compare our algorithm with respect to the standardh literature, namely: JPEG-LS independently applied @n th
lossless coder JPEG-LS presented in [6] and implementatiree colour components obtained splitting the Bayer data,
by HP Laboratories We tested JPEG-LS on Bayer patternJPEG2000 applied on the Bayer pattern image, and the coder
images in two ways: presented by Zhang and Wu in [4].

1. directly applying JPEG-LS to the Bayer pattern images;  The performance improvement of the proposed algorithm

2. applying JPEG-LS to the three colour components obis about 0.4 bpp with respect to the standard lossless coder
tained splitting the Bayer pattern images, as show iRWPEG-LS, and 0.2 bpp with respect to the Zhang and Wu al-
Fig. 4. gorithm. However, the complexity of the proposed algorithm

From the results reported in Table 1 we can concludés too highto allow for a real-time implementation. Thisihig
that applying the JPEG-LS coder directly to the Bayer patcomputational cost is due to two main reasons: the first is
tern images is not a good solution. In fact, JPEG-LS is prothat we have to invert a 24 24 autocorrelation matriRxy
vided with a very simple but effective predictor called MED for each block prediction; the second is due to the estinfate o
(Median Edge Detector). This predictor checks for the presthe zero probability by numerical integration of the modifie
ence of vertical or horizontal edges predicting along then$tudent distribution.
when they occur, otherwise it estimates the current pixel as
the mean value of the adjacent pixels. In the Bayer pattern
images (BPI) adjacent pixels always present abrupt irtiensi 4. CONCLUSION
changes due to the fact that they belong to different colour . .
components. For this reason, the MED predictor is not abld! this paper we propose a new lossless compression algo-
to detect edges, becoming a very simple and ineffective mdithm based upon the optimal vector prediction theory. The
bile average filter. ayer pattern is divided into 2 2 non-overlapping blocks

To obtain the results reported in the second column OEontal_nlng two green, one red and one blue pixels. Each
Table 1 we split the Bayer pattern images into three differ2l0ck is then predicted exploiting the spatial and the spec-
ent images representing the three colour components (sZ@ correlations existing between pixels which belongie t
Fig. 4). In this way, we obtain a compression gain, with re-S2Me block and to the adjacent causal bI_ocks. The obtamed
spect to the first solution, roughly equal to 0.7 bit per pixel €Sults show that the proposed method is effective, but its
The same gain (refer to the third column of Table 1) is obCOMPIexity is too high to allow for a real-time on-board

tained lvina the lossl de of JPEG2000 directly tgardware implementation, so the captured images have to be
ained applying the ‘ossless mode o recty saved in RAW format on the flash memory of the camera and

Lhitp://www.hpl.hp.com/research/infiheory/loco/ then compressed in a post-processing step.

by a modified Student’s distribution centered on the predict

operations without requiring that the predictor coeffitéen
are sent as side-information.
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