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ABSTRACT time) approach for signal or time-series analysis [6], [9], [10]. In

éhis approach, the fraction-of-time distribution function (or, equiv-
ently, empirical distribution function) of a signal or time series

o t) is defined as the infinite-time average of the indicator of the

C%e_:t{t e R : x(t) < &}. If such a time average exists for almost alll

\églues of§ € R, thenx(t) is said relatively measurable (RM). Start-

g from this distribution function, all familiar statistical functions

ﬂfd parameters, such as moments and cumulants, can be defined. If

time averages do not converge as the data-record length approac & .obs.erved time series at hand is |n_terpreted asa _sample-pa}th or
infinite. Thus, none of their statistical functions defined in terms Ofreallzatlon of a stochastic process satisfying appropriate ergodicity

infinite-time averages is convergent. Therefore, also the modulatdlf 2P€'ties, then the above mentioned statistical functions, defined
continuous-time signal exhibits non convergent statistical functions! terms of time averages, are equal to their stochastic counterparts

Consequently, all modulation classification methods based on meﬁ;‘eﬂned in terms of ensemble averages. For signals belonging to

surements of statistical functions such as the autocorrelation fun 'fiirilgsdsisct)rfitt)nttaior:?frgj;ﬁl%:glgé?ﬁgf:;(?sbtle'rfr?gtcitsl,o?hse' ;hb%\‘;;agg’r?_'

tion, moments, and cumulants fail to identify the characteristics of; ot M o '

the modulation format. Simulation results are provided to show th&l0n€d infinite-time average does not exist for almost all values of

lack of convergence, as the data record is increased, of the estirm: Thus, also the other statistical functions do not exist, in the sense
, : ;

_ ; et : : \at the infinite-time averages in their definitions are not conver-
tors of the second-order cyclic statistics of the designed signal. gent. Therefore, the modulation type of signals that are not RM

functions cannot be determined by measurements of time-average
1. INTRODUCTION based statistical functions. Consequently, the modulation format of
these signals cannot be determined by an unauthorized third party
Automatic classification of the modulation format of communica-and, hence, they are suitable to be exploited for the design of secure
tions signals is a relevant problem in military and commercial comiransmission systems.
munications systems. It consists in automatically determining the In the paper, the concept of relative measurability for functions
modaulation type of the signal present in the data record. In the coref a continuous variable [9], [10] is extended to sequences. Then,
text of the signal interception, modulation classification can be seea non RM sequence, instead of a pseudo-noise (PN) sequence, is
as the intermediate step between detection and demodulation. ied as spreading sequence for a direct-sequence spreaawspectr
particular, in non-cooperative signal reception, the modulation for{DSSS) signal. Consequently, the resulting signal turns out to be
mat of the received signal needs to be determined before proceediagnon RM signal. Since digitally modulated signals are almost-
to the demodulation and possible decryptography of the data. ~ cyclostationary [6], a complete second-order cyclostationary anal-
Several techniques for automatic modulation classification havgsis is carried out for the designed signal by estimating its cyclic
been developed in the last two decades. They are based on meatocorrelation function, as a function of the cycle frequency and
surements of statistical functions of the received signal. For examthe lag parameter, when these two parameters vary in a wide range
ple, the algorithms proposed in [2], [12], [14] are based on secondsf values. Moreover, for comparison purpose, the same analysis is
and higher-order moments and cumulants. The modulationearried out for a conventional DSSS signal using a PN spreading se-
classification algorithms in [3], [4], [5], [7], [8], [11], and [13] ex quence. Simulation results show the effectiveness of the proposed
ploit second- and higher-order cyclostationarity properties of sigsignal-design technique. In fact, unlike for the conventional DSSS
nals. signal, the estimator of the cyclic autocorrelation function of the de-
In the present paper, a new signal-design technique is proposesigned non RM signal does not converge as the data-record length
which does not allow to discover the modulation format on the baincreases. Finally, the problem of signal reception and synchroniza-
sis of measurements of statistical functions. Thus, the proposetibn for the authorized party is briefly discussed.
technique is suitable to be exploited in the design of secure trans-
mission systems where the goal is to avoid the signal demodulation
by an unauthorized third party. This is obtained by generating a 2. RELATIVE MEASURABILITY OF SETSAND
sighal whose time-averaged statistical functions such as the auto- SEQUENCES
correlation function, moments, and cumulants are not convergent as

the data-record is increased. Consequently, estimates of these funl_ce-t A be a set of integer numbers. According to the definitions
tions, as well as estimates of spectral functions such as the pow: ’

o L b fven in [9], [10] for sets of real numbers, thadative measuref A
spectrum and moment and cumulant spectra, exhibit a significal

variability as the data-record length changes (e.g., increases). IS defined as
The proposed signal-design technique exploits the concept of

relative measure of functions and sequences. Such a concept is cen

tral in the functional (or, equivalently, nonstochastic or fraction-of-

In this paper, a new technique to design signals for secure tran
missions is proposed. The proposed technique does not allow
an unauthorized third party to discover the modulation format an
hence, to demodulate the signal. The proposed signal-design te
nigue consists in adopting a non relatively measurable sequence
spreading sequence for a direct-sequence spread-spectrurh sig
Non relatively measurable sequences are such that the appropri
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provided that the limit exists. In (1),,ca; is the indicator of the The fact that RM sets are not closed under union and inter-
setA, thatis,1{ncay = 1 forne Aandlncay =0forng A Thus, section and that the relative measyigis additive, but is nob-
the sum in (1) represents the number of elements in the set of int@dditive are properties different from those of the Lebesgue mea-
gers{—N,...,N} belonging toA. If the limit in (1) exists, then the ~ Sure. Consequently, the distribution function and the expectation
setAis said relatively measurable. operator based on time averages, tha_t are built from the relative
From definition (1) it follows thafir(A) represents the propor- Measureur, have properties slightly different from those of the
tion of integer numbers that belong to the #etThus, finite sets dlstrlbu_tl_on function a}nd .the expectation operator of the classmal
have zero relative measure, and only infinite sets can have non-zep&Pbability theory, which is based on ensemble averages built form
relative measure. By following the guidelines given in [10] for the tN€ Lebesgue measure on the sample space. In particular, the fact
sets of real numbers, it can be shown that: the class of RM seffat non RM sets and functions are not difficult to be built (unlike
of integers is not closed under union and intersection; the relativ%on Lebesgue-measurable sets and functions) will be exploited in

measure is additive, but is not-additive; and ifA is a RM set ection 3 to design signals whose statistical functions, defined in
thenA 2 7 — Ais RM ' ' " terms of time averages, are not convergent as the data-record length

Let {xn }nez be a sequence of real numbers, and define approaches infinity.

FX(E) 2 HR({n €7 % < E}) 3. SIGNAL DESIGN
T 1 g 1 o) In this section, a non RM signal is constructed by adopting a non
N—o 2N+1 &\ basé} RM sequence as spreading sequence for a DSSS signal.

Let us consider the signal

wherel{xngf} is the indicator of the sein € Z : xn < &}. If the e
limitin (2) existsV¢€ € R — =g, where=g is an at most countable set, — _ )
then the sequenog is said to baelatively measurableThe func- x(t) n:ZwSLn/Nd Cng(t = NTe) cos 2ot + ) (©)
tion (&) defined in (2) has values i, 1] and is non decreasing.
ThUS, it ha.s a.” the properties_ Of.a dlstrlbutlon function, except thQn (6), {Sn}neZ is an information sequence of binary independent
right-continuity in the discontinuity points. Furthermore, as for ev-and identically distributed (i.i.d.) symbolgcn}nez is a binary
ery bounded nondecreasing function, the set of discontinuity pointspreading or coding sequence independeds@fncz. |-| denotes
is at most countable. integer partN is the number of chip per bily is the chip period,

The functionF(&) allows to define all the familiar probabilistic - andg(t) is a Nyquist-shaped chip pulse with excess-bandwidth fac-
parameters. Furthermore,xf is a RM, not necessarily bounded tor n. If {cn}nez is @ maximal-length PN binary sequence, then the
sequence, and g(-) is a continuous bounded function of bounded signalx(t) models a long-code DSSS signal used in code-division
variation such that for any € R the equatiorg(é) = ¢ admits at  multiple-access (CDMA) systems [6].
most a finite number of solutions in any finite interval, then the  |n the following, a non RM sequence is constructed. The adop-
following fundamental theorem of expectatican be proved: tion of such a non RM sequence as spreading sequence for the signal

X(t) defined in (6) makeg(t) non RM and, hence, with statistical

] 1 N functions defined in terms of time averages that are not convergent.
i g 2 90w = [ a(6)dR() (8 LetAbe the set
AL | J{neZay <|n| <axq1}, @)

where the integral is in the Riemann-Stiltjes sense.

It can be shown that the set of RM sequences is not closed un-
der addition and multiplication. However, the sum and the prods,here is the sequence
uct of two sequences is RM provided that at least one of them is {aken q

bounded and the sequences are jointly RM. Two sequeiges.7,

keN

K
and{yn}nez are said to bgointly RMif the limit a =0, a =a-1+b", keN, b>1. 8
Since rows exponentially witl, it can be easily seen that the
Fo(E1.&m) 2 WRINEZ xum<EINNEZ <&} conyence P Y Y
im -1 0§ 1 1 4 Nae 1o
= m 2N+1n:ZN Parm<éa} Hyn<ée} (4) m(A) = 2N+1n:ZN1{nEA} )

exists form= 0 and for all(&,, &) € R2_ =,, where=, is at most a oscillates in_[O, 1] asN — oo Therefore, for the set A, the limit (1)
countable set of lines. The functidy (&1, &; m) has all the prop- does not exists, that i#§yisnot RM. )
erties of a bivariate joint distribution function with the exception A non RM (band-pass) DSSS-like signal can be obtained by
of the right continuity in the discontinuity points. Furthermore, thecons_lolerlng a sprea_dmg sequeigen (6) such that, fon € A gnd
following fundamental theorem of expectation for the bivariate caséh € A= Z — A, two different spreading subsequences with different
holds, statistical properties are adopted. Specifically, let the spreading or
coding sequence, be defined as
N

. 1 g
Jim NI1 n:Z_Ng(Xner,yn) = ./]Rzg(fl, &2) dFxy(é1,&2;m)  (5) cn £ da(M) Lineay +Ga(M) Lna) - (10)

where {Xyiminez and {Yn}nez, for anym e Z, are two jointly In (10),ga(n) is the pseudo-random sequence [1]

RM, not necessarily bounded, sequences. Moreover, the function R

g(&1, &) is continuous, bounded, and of bounded variation, and for da(n) = cos(m| Pa([n/Nc])]) (11)
any/ € R the equatiory(&1, §2) = ¢ admits at most a finite number

of solutions in any finite rectangular set. It can be shown that twovhere

almost-periodic sequences are jointly RM. Pa(n) £ p2n2 + p1n+ po (12)
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with incommensurate coefficients and pp, andg(n) is the Nc-
periodic sequence

+o00
Gan = Y gan—kN) (13)
k=—o00
with
GB= S hk— Y hk (14)
A kEZl kEZz
In (14), the set$; andl; constitutes a partition df0,1,..., Nc — 1},

that is, 11Nl =0 andl; Uly = {0,1,...,Nc — 1}, and &, is the
Kronecker deltad, = 1 forn= 0 andd, = 0 for n £ 0).

Due to the different patternga(n) andgz(n), and the lack of
relative measurability oA (and, hence, od), the sequence, is not
RM. In fact, let.y £ {—N,...,N}, we have

{neim<él = {neNNA:aa(n) <&}

U{ne ANNA: Ga(n)<&}. (15)
Consequently, since the sequem,(é')(A) defined in (9) oscillates
in [0, 1], the finite-time distribution function

N
(N)gya L
Fe (E) = 2N+1H:ZN1{C”<E}

(16)

where
1 to+T/2
Re(T) = =

X(t+T) x(t) e 12 it (19)

T, to—T/2

is thecyclic correlogram The magnitude and phaseRf (1) rep-
resent the amplitude and phase, respectively, of the finite-strength
additive sinewave component at frequercycontained in the au-
tocorrelation function. Thus, a complete second-order wide-sense
characterization ok(t) can be obtained by estimatifg{ (1) as a
function of the two variablea and1. The cyclic correlogram (19)

is an estimator of the cyclic autocorrelation function (18). It con-
verges, a§ — o, in the temporal mean-square sense to the cyclic
autocorrelation function, provided that the sigré fulfills some

mild conditions expressed in term of summability of its temporal
second- and fourth-order cumulants [6].

Two experiments have been conducted, aimed at showing the
different behavior of the cyclic correlogram of the signél) de-
fined in (6) when the spreading sequence is a PN sequence and when
it is the non RM sequence defined by (10)—(14).

In both the experiments, time is discretized by an oversampling
factorQ = 8 so thatlc = QTs, whereTs is the sampling period. A
binary information sequencsg is transmitted. Moreover = 0.85,

Nc =8, fo = 0.15/Ts, andgn = 0. In the experiments, the magnitude
of the cyclic correlogranR{ (1) as a function ofr /Ts andaTs is

evaluated by a data record length= NTs, with (a) N = 211, (b)

as N — o, approaches alternatively the distribution function of N = 213 and (c)N = 215,

ga(n) and that ofgz(n) (which can be shown to be both RM), that |n the first experiment (Fig. 1), the signe(t) defined in (6)

is, it is not convergent. Analogously, it can be shown that the lagwith PN spreading sequence, is considered. Such a signal is a RM
product sequencen+m¢n is not RM inn. Moreover, for any RM  band-pass DSSS signal. From Fig. 1, toevergencef the esti-
sequencer, with lag productvnimva RM in n, the two sequences mator as the data-record length is increased is evident.

Cn+mCn andvin; mVy, are not jointly RM inn, the sequencey = v ¢y In the second experiment (Fig. \t) is the signal defined in

has the lag product which is not RM, and the continuous-time sig¢6) with spreading sequencggiven by (10)—(14) antd = 10in (8).
nalz(t) £ y ez dng(t —nTe) exhibits a lag produc(t + 7)z(t) non  The coefficients of the polynomidi(n) (see (12)) arg, = /2,

RM in t. Thus, the signak(t) defined in (6) with spreading se- p1= /3, po=0, andly = {1,4,5,7} andl, = {0,2,3,6} in qx(n)

quencecy given by (10)—(14) has non RM lag produgt + 7)x(t)
and, consequently, non convergent autocorrelation function.
Note that the sequence, is not obtained by periodically

(see (14)). As a consequence of tien relative measurabilitpf
the lag-product waveform(t + 1)x(t), we have that the cyclic au-
tocorrelationR{ (1) does not existor any a € R. In particular, the

switching between two RM subsequences. The periodic switching;e averaged autocorrelation functig(t) and the power spec-
in fact, produces a cyclostationary sequence, that is, with statistj-

. > < - . trum do not exist. From Fig. 2, tHack of convergencef the esti-
cRall\I/Ipropertles significantly different from those of the designed nony, 410y a5 the data-record length is increased is evident. In particular,
sequence.

Finally, observe that, for the signalt) defined in (6) with for a fixed cycle frequency, the shape and strength of the cyclic cor-

spreading sequence given by (10)—(14), reception is made exactly relogram are significantly different for different data-record leagth

. ! . This lack of convergence makes the designed signal suitable
as for long-code DSSS signals used in CDMA systems. Specify, )5 oy 11ited in secure transmission systems where the modula-

ically, after the carrier demodulation, in the case of perfect chi,, ormat should not be discovered by statistical function mea-
synchronization, by sampling with sampling frequeng¥ll one surements

obtains the sequence

+-00
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