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ABSTRACT

In this paper, a new technique to design signals for secure trans-
missions is proposed. The proposed technique does not allow to
an unauthorized third party to discover the modulation format and,
hence, to demodulate the signal. The proposed signal-design tech-
nique consists in adopting a non relatively measurable sequence as
spreading sequence for a direct-sequence spread-spectrum signal.
Non relatively measurable sequences are such that the appropriate
time averages do not converge as the data-record length approaches
infinite. Thus, none of their statistical functions defined in terms of
infinite-time averages is convergent. Therefore, also the modulated
continuous-time signal exhibits non convergent statistical functions.
Consequently, all modulation classification methods based on mea-
surements of statistical functions such as the autocorrelation func-
tion, moments, and cumulants fail to identify the characteristics of
the modulation format. Simulation results are provided to show the
lack of convergence, as the data record is increased, of the estima-
tors of the second-order cyclic statistics of the designed signal.

1. INTRODUCTION

Automatic classification of the modulation format of communica-
tions signals is a relevant problem in military and commercial com-
munications systems. It consists in automatically determining the
modulation type of the signal present in the data record. In the con-
text of the signal interception, modulation classification can be seen
as the intermediate step between detection and demodulation. In
particular, in non-cooperative signal reception, the modulation for-
mat of the received signal needs to be determined before proceeding
to the demodulation and possible decryptography of the data.

Several techniques for automatic modulation classification have
been developed in the last two decades. They are based on mea-
surements of statistical functions of the received signal. For exam-
ple, the algorithms proposed in [2], [12], [14] are based on second-
and higher-order moments and cumulants. The modulation-
classification algorithms in [3], [4], [5], [7], [8], [11], and [13] ex-
ploit second- and higher-order cyclostationarity properties of sig-
nals.

In the present paper, a new signal-design technique is proposed,
which does not allow to discover the modulation format on the ba-
sis of measurements of statistical functions. Thus, the proposed
technique is suitable to be exploited in the design of secure trans-
mission systems where the goal is to avoid the signal demodulation
by an unauthorized third party. This is obtained by generating a
signal whose time-averaged statistical functions such as the auto-
correlation function, moments, and cumulants are not convergent as
the data-record is increased. Consequently, estimates of these func-
tions, as well as estimates of spectral functions such as the power
spectrum and moment and cumulant spectra, exhibit a significant
variability as the data-record length changes (e.g., increases).

The proposed signal-design technique exploits the concept of
relative measure of functions and sequences. Such a concept is cen-
tral in the functional (or, equivalently, nonstochastic or fraction-of-

time) approach for signal or time-series analysis [6], [9], [10]. In
this approach, the fraction-of-time distribution function (or, equiv-
alently, empirical distribution function) of a signal or time series
x(t) is defined as the infinite-time average of the indicator of the
set{t ∈ R : x(t) 6 ξ}. If such a time average exists for almost all
values ofξ ∈ R, thenx(t) is said relatively measurable (RM). Start-
ing from this distribution function, all familiar statistical functions
and parameters, such as moments and cumulants, can be defined. If
the observed time series at hand is interpreted as a sample-path or
realization of a stochastic process satisfying appropriate ergodicity
properties, then the above mentioned statistical functions, defined
in terms of time averages, are equal to their stochastic counterparts
defined in terms of ensemble averages. For signals belonging to
the class of the non relatively-measurable functions, the fraction-
of-time distribution function does not exist. That is, the above men-
tioned infinite-time average does not exist for almost all values of
ξ . Thus, also the other statistical functions do not exist, in the sense
that the infinite-time averages in their definitions are not conver-
gent. Therefore, the modulation type of signals that are not RM
functions cannot be determined by measurements of time-average
based statistical functions. Consequently, the modulation format of
these signals cannot be determined by an unauthorized third party
and, hence, they are suitable to be exploited for the design of secure
transmission systems.

In the paper, the concept of relative measurability for functions
of a continuous variable [9], [10] is extended to sequences. Then,
a non RM sequence, instead of a pseudo-noise (PN) sequence, is
used as spreading sequence for a direct-sequence spread-spectrum
(DSSS) signal. Consequently, the resulting signal turns out to be
a non RM signal. Since digitally modulated signals are almost-
cyclostationary [6], a complete second-order cyclostationary anal-
ysis is carried out for the designed signal by estimating its cyclic
autocorrelation function, as a function of the cycle frequency and
the lag parameter, when these two parameters vary in a wide range
of values. Moreover, for comparison purpose, the same analysis is
carried out for a conventional DSSS signal using a PN spreading se-
quence. Simulation results show the effectiveness of the proposed
signal-design technique. In fact, unlike for the conventional DSSS
signal, the estimator of the cyclic autocorrelation function of the de-
signed non RM signal does not converge as the data-record length
increases. Finally, the problem of signal reception and synchroniza-
tion for the authorized party is briefly discussed.

2. RELATIVE MEASURABILITY OF SETS AND
SEQUENCES

Let A be a set of integer numbers. According to the definitions
given in [9], [10] for sets of real numbers, therelative measureof A
is defined as

µR(A) , lim
N→∞

1
2N+1

N

∑
n=−N

1{n∈A} (1)
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provided that the limit exists. In (1),1{n∈A} is the indicator of the
setA, that is,1{n∈A} = 1 for n∈ A and1{n∈A} = 0 for n 6∈ A. Thus,
the sum in (1) represents the number of elements in the set of inte-
gers{−N, . . . ,N} belonging toA. If the limit in (1) exists, then the
setA is said relatively measurable.

From definition (1) it follows thatµR(A) represents the propor-
tion of integer numbers that belong to the setA. Thus, finite sets
have zero relative measure, and only infinite sets can have non-zero
relative measure. By following the guidelines given in [10] for the
sets of real numbers, it can be shown that: the class of RM sets
of integers is not closed under union and intersection; the relative
measureµR is additive, but is notσ -additive; and ifA is a RM set,
thenĀ , Z−A is RM.

Let {xn}n∈Z be a sequence of real numbers, and define

Fx(ξ ) , µR({n∈ Z : xn 6 ξ})

= lim
N→∞

1
2N+1

N

∑
n=−N

1{xn6ξ} (2)

where1{xn6ξ} is the indicator of the set{n∈ Z : xn 6 ξ}. If the
limit in (2) exists∀ξ ∈R−Ξ0, whereΞ0 is an at most countable set,
then the sequencexn is said to berelatively measurable. The func-
tion Fx(ξ ) defined in (2) has values in[0,1] and is non decreasing.
Thus, it has all the properties of a distribution function, except the
right-continuity in the discontinuity points. Furthermore, as for ev-
ery bounded nondecreasing function, the set of discontinuity points
is at most countable.

The functionFx(ξ ) allows to define all the familiar probabilistic
parameters. Furthermore, ifxn is a RM, not necessarily bounded
sequence, and ifg(·) is a continuous bounded function of bounded
variation such that for anyℓ ∈ R the equationg(ξ ) = ℓ admits at
most a finite number of solutions in any finite interval, then the
following fundamental theorem of expectationcan be proved:

lim
N→∞

1
2N+1

N

∑
n=−N

g(xn) =
∫

R

g(ξ )dFx(ξ ) (3)

where the integral is in the Riemann-Stiltjes sense.
It can be shown that the set of RM sequences is not closed un-

der addition and multiplication. However, the sum and the prod-
uct of two sequences is RM provided that at least one of them is
bounded and the sequences are jointly RM. Two sequences{xn}n∈Z

and{yn}n∈Z are said to bejointly RM if the limit

Fxy(ξ1,ξ2;m) , µR({n∈ Z : xn+m 6 ξ1}∩{n∈ Z : yn 6 ξ2})

= lim
N→∞

1
2N+1

N

∑
n=−N

1{xn+m6ξ1} 1{yn6ξ2} (4)

exists form= 0 and for all(ξ1,ξ2)∈R
2−Ξ0, whereΞ0 is at most a

countable set of lines. The functionFxy(ξ1,ξ2;m) has all the prop-
erties of a bivariate joint distribution function with the exception
of the right continuity in the discontinuity points. Furthermore, the
following fundamental theorem of expectation for the bivariate case
holds,

lim
N→∞

1
2N+1

N

∑
n=−N

g(xn+m,yn) =
∫

R2
g(ξ1,ξ2)dFxy(ξ1,ξ2;m) (5)

where {xn+m}n∈Z and {yn}n∈Z, for any m ∈ Z, are two jointly
RM, not necessarily bounded, sequences. Moreover, the function
g(ξ1,ξ2) is continuous, bounded, and of bounded variation, and for
anyℓ ∈ R the equationg(ξ1,ξ2) = ℓ admits at most a finite number
of solutions in any finite rectangular set. It can be shown that two
almost-periodic sequences are jointly RM.

The fact that RM sets are not closed under union and inter-
section and that the relative measureµR is additive, but is notσ -
additive are properties different from those of the Lebesgue mea-
sure. Consequently, the distribution function and the expectation
operator based on time averages, that are built from the relative
measureµR, have properties slightly different from those of the
distribution function and the expectation operator of the classical
probability theory, which is based on ensemble averages built form
the Lebesgue measure on the sample space. In particular, the fact
that non RM sets and functions are not difficult to be built (unlike
non Lebesgue-measurable sets and functions) will be exploited in
Section 3 to design signals whose statistical functions, defined in
terms of time averages, are not convergent as the data-record length
approaches infinity.

3. SIGNAL DESIGN

In this section, a non RM signal is constructed by adopting a non
RM sequence as spreading sequence for a DSSS signal.

Let us consider the signal

x(t) =
+∞

∑
n=−∞

s⌊n/Nc⌋ cn g(t −nTc) cos(2π f0t +φ0) . (6)

In (6), {sn}n∈Z is an information sequence of binary independent
and identically distributed (i.i.d.) symbols,{cn}n∈Z is a binary
spreading or coding sequence independent of{sn}n∈Z, ⌊·⌋ denotes
integer part,Nc is the number of chip per bit,Tc is the chip period,
andg(t) is a Nyquist-shaped chip pulse with excess-bandwidth fac-
tor η . If {cn}n∈Z is a maximal-length PN binary sequence, then the
signalx(t) models a long-code DSSS signal used in code-division
multiple-access (CDMA) systems [6].

In the following, a non RM sequence is constructed. The adop-
tion of such a non RM sequence as spreading sequence for the signal
x(t) defined in (6) makesx(t) non RM and, hence, with statistical
functions defined in terms of time averages that are not convergent.

Let A be the set

A ,
⋃

k∈N

{n∈ Z : a2k 6 |n| < a2k+1} , (7)

where{ak}k∈N is the sequence

a0 = 0, ak = ak−1 +bk, k∈ N, b > 1. (8)

Sinceak grows exponentially withk, it can be easily seen that the
sequence

m(N)(A) ,
1

2N+1

N

∑
n=−N

1{n∈A} (9)

oscillates in[0,1] asN → ∞. Therefore, for the set A, the limit (1)
does not exists, that is,A is not RM.

A non RM (band-pass) DSSS-like signal can be obtained by
considering a spreading sequencecn in (6) such that, forn∈ A and
n∈ Ā , Z−A, two different spreading subsequences with different
statistical properties are adopted. Specifically, let the spreading or
coding sequencecn be defined as

cn , qA(n)1{n∈A} + q̃Ā(n)1{n∈Ā} . (10)

In (10),qA(n) is the pseudo-random sequence [1]

qA(n) , cos(π⌊PA(⌊n/Nc⌋)⌋) (11)

where
PA(n) , p2n2 + p1n+ p0 (12)
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with incommensurate coefficientsp1 and p2, andq̃Ā(n) is theNc-
periodic sequence

q̃Ā(n) ,
+∞

∑
k=−∞

qĀ(n−kNc) (13)

with
qĀ(n) , ∑

k∈I1

δn−k− ∑
k∈I2

δn−k . (14)

In (14), the setsI1 andI2 constitutes a partition of{0,1, . . . , Nc−1},
that is, I1 ∩ I2 = /0 and I1 ∪ I2 = {0,1, . . . ,Nc − 1}, andδn is the
Kronecker delta (δn = 1 for n = 0 andδn = 0 for n 6= 0).

Due to the different patternsqA(n) and q̃Ā(n), and the lack of
relative measurability ofA (and, hence, of̄A), the sequencecn is not
RM. In fact, letIN , {−N, . . . ,N}, we have

{n∈ IN : cn 6 ξ} = {n∈ IN ∩A : qA(n) 6 ξ}
∪

{
n∈ IN ∩ Ā : q̃Ā(n) 6 ξ

}
. (15)

Consequently, since the sequencem(N)(A) defined in (9) oscillates
in [0,1], the finite-time distribution function

F(N)
c (ξ ) ,

1
2N+1

N

∑
n=−N

1{cn6ξ} (16)

as N → ∞, approaches alternatively the distribution function of
qA(n) and that of̃qĀ(n) (which can be shown to be both RM), that
is, it is not convergent. Analogously, it can be shown that the lag-
product sequencecn+m cn is not RM in n. Moreover, for any RM
sequencevn with lag productvn+m vn RM in n, the two sequences
cn+mcn andvn+mvn are not jointly RM inn, the sequencedn , vncn
has the lag product which is not RM, and the continuous-time sig-
nalz(t) , ∑n∈Z dn g(t −nTc) exhibits a lag productz(t +τ)z(t) non
RM in t. Thus, the signalx(t) defined in (6) with spreading se-
quencecn given by (10)–(14) has non RM lag productx(t + τ)x(t)
and, consequently, non convergent autocorrelation function.

Note that the sequencecn is not obtained by periodically
switching between two RM subsequences. The periodic switching,
in fact, produces a cyclostationary sequence, that is, with statisti-
cal properties significantly different from those of the designed non
RM sequence.

Finally, observe that, for the signalx(t) defined in (6) with
spreading sequencecn given by (10)–(14), reception is made exactly
as for long-code DSSS signals used in CDMA systems. Specif-
ically, after the carrier demodulation, in the case of perfect chip
synchronization, by sampling with sampling frequency 1/Tc, one
obtains the sequence

xk ,

[ +∞

∑
n=−∞

s⌊n/Nc⌋ cn g(t −nTc)

]

t=kTc

= s⌊k/Nc⌋ ck . (17)

Then, by multiplying the received sequencexk and the spreading
sequenceck, accounting for the fact thatc2

k = 1 ∀k, and decimat-
ing the result byNc, one gets the information sequencesk. For the
sequence synchronization purpose, as for long-code DSSS signals,
the receiver should get via an auxiliary channel the status of the
spreading sequence. Thus, in the case of perfect synchronization,
the performance of the receiver for the signalx(t) defined in (6)
with spreading sequencecn given by (10)–(14) is the same as that
of the receiver for the conventional long-code DSSS signal (where
cn is a PN sequence).

4. NUMERICAL RESULTS

Digitally modulated signals are almost-cyclostationary [6]. The
central parameter of their second order wide-sense characterization
is thecyclic autocorrelation function[6]

Rα
x (τ) , lim

T→∞
Rα

xT
(τ) (18)

where

Rα
xT

(τ) ,
1
T

∫ t0+T/2

t0−T/2
x(t + τ)x(t)e− j2παt dt (19)

is thecyclic correlogram. The magnitude and phase ofRα
x (τ) rep-

resent the amplitude and phase, respectively, of the finite-strength
additive sinewave component at frequencyα contained in the au-
tocorrelation function. Thus, a complete second-order wide-sense
characterization ofx(t) can be obtained by estimatingRα

x (τ) as a
function of the two variablesα andτ. The cyclic correlogram (19)
is an estimator of the cyclic autocorrelation function (18). It con-
verges, asT → ∞, in the temporal mean-square sense to the cyclic
autocorrelation function, provided that the signalx(t) fulfills some
mild conditions expressed in term of summability of its temporal
second- and fourth-order cumulants [6].

Two experiments have been conducted, aimed at showing the
different behavior of the cyclic correlogram of the signalx(t) de-
fined in (6) when the spreading sequence is a PN sequence and when
it is the non RM sequence defined by (10)–(14).

In both the experiments, time is discretized by an oversampling
factorQ = 8 so thatTc = QTs, whereTs is the sampling period. A
binary information sequencesn is transmitted. Moreover,η = 0.85,
Nc = 8, f0 = 0.15/Ts, andφ0 = 0. In the experiments, the magnitude
of the cyclic correlogramRα

xT
(τ) as a function ofτ/Ts andαTs is

evaluated by a data record lengthT = NTs, with (a) N = 211, (b)
N = 213, and (c)N = 215.

In the first experiment (Fig. 1), the signalx(t) defined in (6)
with PN spreading sequence, is considered. Such a signal is a RM
band-pass DSSS signal. From Fig. 1, theconvergenceof the esti-
mator as the data-record length is increased is evident.

In the second experiment (Fig. 2),x(t) is the signal defined in
(6) with spreading sequencecn given by (10)–(14) andb= 10 in (8).
The coefficients of the polynomialPA(n) (see (12)) arep2 =

√
2,

p1 =
√

3, p0 = 0, andI1 = {1,4,5,7} andI2 = {0,2,3,6} in qĀ(n)
(see (14)). As a consequence of thenon relative measurabilityof
the lag-product waveformx(t + τ)x(t), we have that the cyclic au-
tocorrelationRα

x (τ) does not existfor anyα ∈ R. In particular, the
time-averaged autocorrelation functionR0

x(τ) and the power spec-
trum do not exist. From Fig. 2, thelack of convergenceof the esti-
mator as the data-record length is increased is evident. In particular,
for a fixed cycle frequency, the shape and strength of the cyclic cor-
relogram are significantly different for different data-record lengths.

This lack of convergence makes the designed signal suitable
to be exploited in secure transmission systems where the modula-
tion format should not be discovered by statistical function mea-
surements.
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