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ABSTRACT

The aim of this paper is to combine the strengths of two
recently proposed Blind Source Separation (BSS) algo-
rithms. The first algorithm, abbreviated as EFICA, is
a sophisticated variant of the well-known Independent
Component Analysis (ICA) algorithm FastICA. EFICA
s based on minimizing the statistical dependencies be-
tween the instantaneous (marginal) distributions of the
estimated source signals and therefore disregards any
possible time structure of the sources. The second algo-
rithm, WASOBI, is a weight-adjusted variant of SOBI, a
popular BSS algorithm that uses only the time structure
of the source signals to achieve the separation. The sepa-
ration accuracy of EFICA and WASOBI can be assessed
using the estimated source signals alone, therefore al-
lowing us to choose the most appropriate of the two in
every scenario. Here, two different EFICA-WASOBI
combination approaches are proposed and their perfor-
mance assessed using images and simulated signals.

1. INTRODUCTION

Blind Source Separation (BSS) is a problem which has
been widely studied in the last two decades. It consists
in recovering a set of unknown source signals from their
observed mixtures making as few assumptions about the
mixing process as possible. The linear and instanta-
neous BSS model can be formulated as follows

x = As (1)

where s represents a d x N data matrix having as rows
the unobserved source signals s;, & = 1,...,d. In this
paper we will consider only the square, invertible case,
where the number of observed mixtures is equal to the
number of sources. The gogl\ of BSS techniqu/e\s is to esti-
mate a separating matrix W such that § = Wx ~ PDs
where D is a diagonal matrix and P is a permutation
matrix. If the source signals are assumed to be mutually
independent, the BSS problem can be solved by recov-
ering independence in the estimated source signals, i.e.
by using Independent Component Analysis [1].
Without any loss of generality we can assume that
the source signals are centered (have zero mean and unit
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variance). As we have mentioned above neither the or-
der nor the scale of the source signals can be recovered.
However, in order to simplify the derivations in this
paper we will assume that the scale of the estimated
sources is the correct one and we use the re-ordering
proposed in [2] to guarantee that if the sources are per-

fectly recovered then § = s and G = WA = I, where I
denotes the d x d identity matrix.

For an estimate of the de-mixing matrix W the
Interference-to-Signal Ratio (ISR) matrix is defined by

k(=1,2,...d 2)

The ISR of the k-th estimated signal is the k-th element
of a d-dimensional vector isr, where

d 2
ZZ:I,Z;&}; G
2
Gk

isr; =

k=1,2,..d. 3)

At least three major types of separation criteria have
been proposed in the literature based on modeling the
source signals either as 1) non-Gaussian independent
and identically distributed (i.i.d.) processes [3-6], 2)
weakly stationary (WS) random processes driven by
white Gaussian noise [7,8], or 3) sequences of indepen-
dent Gaussian variables with time-varying variances [9].
However, real-life data is not expected to fit perfectly
in any of the models above but rather a combination
of the three of them. For instance, electroencephalo-
graphic (EEG) signals are known to have strong tempo-
ral and spatial structure which suggest that they could
be better modeled by a suitable combination of mod-
els 1) and 2) above. Several attempts of combining
those two models can be found in the literature (see
e.g. [10,11]). They are usually based on defining new
separation criteria by adding together a time-structure-
based criterion and a spatial-structure-based criterion.
Theoretically, a more effective combination could be ob-
tained by modeling the signals as WS processes driven
by arbitrarily distributed white noise. However, deriva-
tion of an efficient algorithm for such model is a very
difficult task. The approach that we take here is some-
what different and is based on choosing for each source
signal the best fitting model among models 1) and 2).
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The actual BSS algorithms that we aim to combine are
EFICA [6] and WASOBI [8, 12, 14], which are two re-
cently proposed algorithms, shown to be asymptotically
efficient within the scope of model 1) and model 2), re-
spectively [13,15].

2. EFICA

EFICA is an ICA algorithm designed to separate non-
Gaussian i.i.d. signals. The underlying assumption is
that each source signal s;, & = 1,...,d consists of V
independent realizations of a random variable &, having
a rllon—Gaussian distribution function Fj(z) = P(§; <
The algorithm EFICA is a version of the FastICA [4]
algorithm that features adaptive choice of the FastICA
non-linearity. Let gx(-) be the nonlinear function chosen
for k—th signal, k =1,...,d and let g (-) be its deriva-
tive. Finally, let “E” stand for the expectation operator,
which can be realized by the sample mean. Then, the el-
ements of the ISR matrix are asymptotically equal to [6]

1 w(e+7)
ISREF = — £ 4
I T S o) @
where
_ 2 wr = E[Spgr(Sk)]
I ETEL = EG)
k= |ME — Pk B = E[g;%(/s\k)]

In the best possible case, i.e., when g, equals the
score function v of the corresponding distribution
Fy, (if it exists) for all k¥ = 1,...,d, then equation
(4) is equal to the corresponding Cramer-Rao Lower
Bound (CRLB) [15], which is

1 K¢
CRLByy = ——
ke N Fpky — 1’ (5)

where ki, = E[7(sk)].

The theoretical ISR was shown to approximate the
empirical ISR very well provided that the independent
components are i.i.d., that means that they have no
time structure. If the components are strongly auto-
correlated, the theoretical ISR appears to be biased, in
particular, overly optimistic.

3. WASOBI

WASOBI is a second-order BSS algorithm that exploits
the time structure of the sources. The time-lagged sam-
ple correlation matrices of the observed mixtures

N
Ry[7] = %Zx[n]xT[n+T] 7=0,...,M—1 (6)

(where x[n] denotes the n-th column of the d x N ma-
trix x) are related to the time-shifted sample correlation
matrices of the sources by

Ryx[7] = AR4[7]AT 7=0,....,.M=1 (7)

1To be exact, at most one of the independent components is
allowed to have Gaussian distribution

where due to the spatial decorrelation  of the
sources, their correlation matrices Rg[r] =
diag[Ri[7], Ro[7], ..., R4[7]]T are diagonal and Rj[r]
is the auto-correlation of si[n] at lag 7. The original
SOBI algorithm estimates matrix A by enforcing per-
fect diagonalization of Rx[0] and approximate unitary
joint diagonalization of Rx[¢] for £ =1,..., M — 1. This
operation implies sub-optimal weighting of the errors
in the correlation estimates [8].

In WASOBI, the problem of diagonalizing R [¢] for
£=0,...,M —1is reformulated as a non-linear weighted
least squares (WLS) problem. An asymptotically opti-
mal weight matrix can be obtained for the case of Auto-
Regressive (AR) Gaussian sources. If all source signals
are Gaussian AR processes of order M — 1 the asymp-
totic ISR matrix of the WASOBI estimates is equal to
the corresponding CRLB [12]:

1 Dre o2 R,[0]

ISRY4 = CRLBy, = —
ke M TN 1= Greger 02Ry[0]

(®)

where o7 is the variance of the innovation sequence of
the k—th source,

>
?s~M| =

Dre

M-1
> Z aieajeRili — j]
%,j=0

and {aig}f\igl are AR coefficients of the /—th source
with agp =1 for k,{=1,...,d.

4. PROPOSED METHODS

The major reason for using WASOBI and EFICA to
combine temporal and spatial information in the sepa-
ration process is that their theoretical performance can
be estimated via (4) and (8) using consistent estimates
of the statistical quantities involved, i.e., sample means
and Yule-Walker or other AR coefficients estimates, re-
spectively. This suggests a computationally appealing
means for evaluating (at least asymptotically) the ac-
curacy of the estimated components. Indeed the expres-
sions in (4) and (8) are theoretically valid only for their
corresponding assumed signal model. Nevertheless, sim-
ulation experiments show that they are robust enough
to be considered valid even when their assumed model
is only approximately obeyed. An alternative method
for assessing the separation accuracy of BSS algorithms
is to use bootstrap methods [16]. However, this latter
approach has the major drawback of being computa-
tionally very demanding. Furthermore, the definition of
bootstrap surrogates of data with time structure is not
trivial. Another reason for choosing EFICA and WA-
SOBI is that they are asymptotically efficient for their
respective signal models which envisages good perfor-
mance of a combination of the two algorithms.

A straightforward approach to combine EFICA and
WASOBI would be to apply a simple per-signal decision-
based method, namely to decide between signals esti-
mated via EFICA and WASOBI by comparing (4) and
(8) (for each k). However, the main drawback of such an
approach is that does not eliminate the effect of the “in-
appropriate” sources for each algorithm. In other words,
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in an ideal situation it would be desired to first separate
the mixtures into two isolated groups: one consisting
only of mixtures of the i.i.d. non-Gaussian sources (op-
timally separable by EFICA), and the other consisting
of the remaining sources (optimally separable by WA-
SOBI). Then each group would be separated using its
respective algorithm, thus eliminating upfront the effect
of “nuisance sources” for each algorithm. However, since
this initial isolation stage is not feasible (and, moreover,
not each source can be labeled as belonging exclusively
to one of the two groups), we propose two alternative
approaches, which work iteratively to approach the de-
sired isolation, combining the strengths of both EFICA
and WASOBI:

4.1 Algorithm EFWS

The first method, called EFWS (from EFica-WaSobi),

proceeds in two main steps:

1. (a) Using EFICA, estimate the sources s“% from the
mixtures X.

(b) Estimate the ISR matrix achieved by EFICA,
ISR®” via (4) and the corresponding vector
isePt

(¢) Incorporating s®F into formula (8), compute the
asymptotical ISR matrix achieved by WASOBI
ISR"* and the corresponding vector isr'V4.

2. For each k = 1,...,d accept the estimated signal

sPF iff istF > isr)’#. Let the accepted and the
rejected signals be denoted by u and v, respectively.
Then, apply algorithm WASOBI to the rejected sig-
nals v.

4.2 Algorithm COMBI

The second method, abbreviated as COMBI, is more so-
phisticated method than EFWS at the expense of higher
computational requirements. It proceeds in the follow-
ing steps:
1. Let z=x
2. Apply both algorithms EFICA and WASOBI to z;
let the estimated source signals be sZ¥ and sW4,
respectively. Similarly, the estimated ISR matrix are
ISREY and ISR 4, and the corresponding vectors
isrPF and isr"4.
. Let E = ming istf’” and W = miny, isr}’
4. TE<W,
(a) accept those signals s®F for which isr2? < W
and redefine z as the rejected signals of sZF.

else,
(b) accept those signals s"4 for which isr) 4 < E
and redefine z as the rejected signals of s"'4

5. If there are more than one rejected signals, go to (2).
Otherwise, if any, accept the rejected signal.

w

5. SIMULATIONS

An illustrative comparison with well-known ICA algo-
rithms [3,4,8,10,11] has been conducted to demonstrate
the advantages of the proposed methods. Four signals
of length N = 1000 samples were mixed using a random
matrix. The first two source signals (denoted by AR1
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Figure 1: SIR for sources AR1, AR2, GG(«) and Gauss
when a = 1 and p € [0,1). The shown SIR values are
the average from 100 random realizations of the mixing
matrix and the sources.
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Figure 2: SIR for sources AR1, AR2, GG(a) and Gauss
when p = 0.7 and a € [0.1,10]. The shown SIR val-
ues are the average from 100 random realizations of the
mixing matrix and the sources.

and AR2 in figures 1 and 2) were AR processes gen-
erated from white noise having a generalized Gaussian
distribution GG(a) - for definition see, e.g., Appendix
B in [6]. The AR coeflicients of sources AR1 and AR2
were (1,p) and (1, —p), respectively. The third source
was an ii.d. process having GG(a) distribution (this
source is denoted by GG(«) in the figures). The last
source was a Gaussian white noise signal (denoted by
Gauss). The separation performance was measured in
terms of Signal-To-Interference ratio (SIR) which is just
the inverse of the ISR defined in equation (3).

Note that for “small” values of p the signals have
no time structure (i.e., they are i.i.d. in time) while
the divergence from Gaussianity grows with a being
far from 2, which is a scenario much more suitable for
EFICA than for WASOBI. By contrast, for p — 1 the
time structure of the two AR processes becomes pre-
dominant over their non-Gaussianity . In this latter
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Figure 3: Mean SIR (average of individual signals SIRs)
for a fixed @ = 1 and a fixed p = 0.7, respectively. The
shown values are the average results for 100 random
realizations of the mixing matrix and the sources.
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Figure 4: Average empirical ISR matrices of EFICA,
WASOBI, EFWS and COMBI and average theoretical
ISR matrices of EFICA, WASOBI achieved in separa-
tion of the source signals AR1, AR2, GG(«), and Gauss,
with a =1 and p = 0.7.

case, WASOBI outperforms EFICA as is shown in fig-
ure 3. Both proposed methods COMBI and EFWS ben-
efit from the complementary advantages of algorithms
EFICA and WASOBI. Moreover, they are able to esti-
mate the Gaussian i.i.d. signal, which cannot be sepa-
rated unless all the other signals are correctly estimated.

Using 100 random repetitions of the sources (for
a =1 and p = 0.7) and the mixing matrix we assessed
the performance of the ISR estimators (4) and (8) by
computing their mean values. The results are shown in
figure 4, together with the mean of the true (empirical)
ISR matrix. The results suggest that the proposed esti-
mators are very accurate. The figure also includes the
empirical ISR matrices achieved by the novel methods
EFWS and COMBI.

To demonstrate the performance of the algorithm on
real data we used a dataset consisting of the grayscale
images shown in figure 7. The first two images were typ-
ical textures while the last two images were synthetically
generated noise. These images were obtained from [17].
The size of the test images were 128 x 128 pixels and

were scanned column by column to form one dimensional
source signals. After centering and normalization, the
source images were mixed with a random mixing ma-
trix, and subsequently separated using ICA. In order
to study the effect of noise on the performance of the
proposed algorithm we incorporated different levels of
additive gaussian noise to the observed mixtures. The
accuracy of the separation for the k” source was as-
sessed in terms of Signal-To-Interference-Plus-Noise Ra-
tio (SINR) [18]:

2
Gk
d d
Soien Gy 02 25 Wi,

where o is the standard deviation of the noise. Note that
the highest SINR is obtained when the mean squared
difference between the true and estimated gources is
minimum, i.e. when W = AT (AAT +0%I)~

The average SINR obtained for test images 1 and 2,
i.e. for the images with strong spatial autocorrelations,
is shown in figure 5. The average SINR for the noise
images (images 3 and 4) is shown in figure 6. From the
results we can conclude that for low noise levels the ac-
curacy of EFWS and especially of COMBI was clearly
superior to the other tested algorithms. When the noise
power becomes considerable the differences in the per-
formance of the different algorithms become smaller but
still EFWS and COMBI are among the best performing
ones. The texture images have very strong spatial au-
tocorrelations which explains the excellent accuracy of
WASOBI in separating them. However, the noise images
lack any autocorrelations, which makes them impossible
to extract for WASOBI. The two proposed algorithms
EFWS and COMBI are able to effectively combine the
excellent performance of WASOBI in separating the tex-
tures and the good performance of EFICA in separating
the two noise images. The average CPU time of EFWS
and COMBI was 0.83 and 1.47 seconds respectively.?
The other algorithms, EFICA, WASOBI, SOBI, Fas-
tICA, JADE [3], JADErp [11], and ThinICA [10] had
average computation times 0.63, 0.22, 0.14, 0.17, 0.06,
0.20 and 0.87 seconds, respectively. Overall, we can con-
clude that EFWS and COMBI are the algorithms that
achieve the best trade-off between accuracy and compu-
tational cost for this dataset.

SINRy, = 9)

6. CONCLUSIONS

In this paper we have proposed novel ICA algorithms
that effectively combine two powerful ICA methods
EFICA and WASOBI. The combination allows sources-
selective separation of mixtures in which each source
is either an i.i.d. non-Gaussian sequence or a stationary
Gaussian processe. Their wider applicability and supe-
rior accuracy were demonstrated using simulated and
real data.
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