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ABSTRACT

Reconstruction of an image from a set of projections has been
adapted to generate multidimensional nuclear magnetic resonance
(NMR) spectra, which have discrete features that are relatively
sparsely distributed in space. For this reason, a reliable reconstruc-
tion can be made from a small number of projections. This new
concept is called Projection Reconstruction NMR (PR-NMR). In
this paper, multidimensional NMR spectra are reconstructed by Re-
versible Jump Markov Chain Monte Carlo (RJMCMC). This statis-
tical method generates samples under the assumption that each peak
consists of a small number of parameters: position of peak centres,
peak amplitude, and peak width. In order to find the number of
peaks and shape, RJMCMC has several moves: birth, death, merge,
split, and invariant updating. The reconstruction schemes are tested
on a set of six projections derived from the three-dimensional 700
MHz HNCO spectrum of a protein HasA.

1. INTRODUCTION

Multidimensional NMR spectroscopy is well known to be very use-
ful for protein structure determination. However, it has a seri-
ous drawback, speed. The minimum measurement time of an N-
dimensional NMR experiment increases as the number of dimen-
sions increases. This makes multidimensional NMR spectroscopy
intractable in practice. For these reasons, several investigators have
been trying to speed up these measurements by more efficient ap-
proaches. Many approaches based on the demands are traced back
to the concept ofaccordion spectroscopy[1]. GFT-NMR [2] and
Projection Reconstruction NMR (PR-NMR) [3, 4, 5, 6, 7] address
this problem. PR-NMR considered in this paper speeds up the ac-
quisition of multidimensional NMR spectra by reconstructing them
from a small number of projections. The procedure is related to that
used in X-ray, computed tomography (CT) and fMRI which have
been approached by several statistical methods such as maximum
likelihood [8], EM algorithm [9], maximum entropy [10, 11, 12]
and maximum a posteriori using Gibbs prior [13]. We have applied
several of these methods to PR-NMR [14]. However, these methods
are best suited to CT and X-ray tomography where the physiologi-
cal object is continuous, in contrast to the discrete peak property of
an NMR spectrum. Therefore, we propose RJMCMC to reconstruct
the discrete NMR spectra. RJMCMC searches for the number and
the shape of discrete peaks under the assumption that each discrete
peak consists of a small number of parameters: centre position, am-
plitude, and line-width.

This paper mainly consists of three sections. In the first sec-
tion, we define the models for multidimensional NMR. The next
section demonstrates the design of Bayesian models for the PR-
NMR. RJMCMC algorithms are explained in this section as well.
In the last section, RJMCMC reconstruction is compared with Max-
imum Entropy reconstruction with an experimental data with 6 pro-
jections.

2. MODELS FOR MULTIDIMENSIONAL NMR

Reconstruction of multidimensional NMR spectra from a small
number of projections can be achieved by two strategies: pixel-
by-pixel modeling and peak-by-peak modeling. While pixel-by-
pixel modeling determines all pixels on an image individually in
terms of the given projections, the peak-by-peak approach recon-
structs an image using a finite collection of specific peak shapes.
Even though the peak-by-peak model is an idealisation of reality,
it is a very reasonable assumption, in that the NMR peak shape
can be well approximated as a specific shape such as Gaussian or
Lorentzian. In the peak-by-peak approach, each peak consists of
centre position, amplitude, and peak-width. Peak-by-peak estima-
tion can be more efficient since it models explicitly the sparseness
inherent in the NMR spectra. Thus, in the peak-by-peak approach,
we do not have to directly update all areas of the image as would be
done in the pixel-by-pixel approach. Another interpretation is that
a solution can rapidly be obtained since the number of parameters
for peak-by-peak estimation is much smaller than that for pixel-by-
pixel. Here, then, we define the underlying image model at pixel
locationx with a finite collection of peaks,

S(x) =
K

∑
k=1

Akφ(x|µk,Σ) (1)

φ(x|µk,Σ) = 1√
det(2πΣ)

exp

{
− 1

2(x−µk)TΣ−1(x−µk)

}

whereS(x) is the intensity at the image positionx and

x = [x1,x2]T

µk = [µk,1,µk,2]T

Σ = σ2I

In Eq. (1),Ak is the amplitude ofkth peak. The radial function
φ denotes the specific peak shape such as Gaussian, Lorentzian, or
Laplacian shape. In this paper, we use the Gaussian shape for the
radial functionsφ , which has two components:µk for centre posi-
tion andσ for peak-width. In NMR spectroscopy, the width of the
peaks are considered almost constant. Thus, we use a single width
parameterσ in order to reduce the total number of parameters, and
this speeds up RJMCMC. However, in earlier work we also experi-
mented successfully with variable peak widths within each image.

In PR-NMR, input data are a small number of projections ob-
tained at different projection angles. Suppose thatY is the projec-
tion data. λi ands stand for theith projection angle and the sam-
ple index into a projection, respectively,i = 1, · · · ,ϑ . ϕi denotes
a scaling factor, which varies with the projection number,i. The
PR-NMR data is then defined as

Yi
s = ϕiR(S,λi ,s)+ ελi

(2)
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whereYi
s is thesth data-point ofith projection taken at angleλi and

R(S,λi ,s) is the projection function for theith angleλi and data
point as follows:

R(S,λi ,s) =
∫ ∞

−∞

∫ ∞

−∞
S(x)δ (x1cosλi +x2sinλi −s)dx1dx2 (3)

Suppose that the number of data points in each projection isM and
the number of peaks isK. Eq. (2) can be written in the linear model
framework using vector notation as follows:

Y = XA1:K +e wheree
iid∼ N(e;0,σ2

e I) (4)

whereσe is assumed known.Y is the stacked vector of projection
data, defined as follows:

YT =

[
Y1

1 , · · · ,Y1
M , · · · ,Yϑ

1 , · · · ,Yϑ
M

]
(5)

X denotes the integrated peaks obtained by substituting Eq. (1)
into Eq. (3) in terms of anglesλ and scaling factorsϕ andA1:K =
[A1,A2, · · · ,AK ] is a vector of peak amplitudes.e is a noise vector.
When we haveϑ projections,X is a matrix with size(Mϑ)×K
andA1:K is a K× 1 vector. The size ofY ande vectors is(Mϑ).
For instance, when we haveϑ = 4 projections withM = 100points
and the image has 3 peaks, the size of matricesY, X, andA1:K are
400×1, 400×3, and3×1 respectively.

3. BAYESIAN MODELS FOR PR-NMR

The peak-by-peak approach presents a computational challenge in
that the number of peaks are not known apriori. In order to estimate
the number of peaks, trans-dimensional methods can be applied.
One of the most useful trans-dimensional approaches is Reversible
Jump Markov Chain Monte Carlo (RJMCMC) [15, 16, 18, 19], a
promising approach that we adapt for finding peaks in multidimen-
sional NMR spectroscopy.

Denote byθk ∈ Θk the parameter vector associated with the
peak indexed byk∈ κ, then forK peaks we have the model:

θ1:K = (µ1:K ,A1:K ,σ ,ϕ1:ϑ ) whereµ1:K = (µ1,1:K ,µ2,1:K)(6)

Ak
iid∼ N(Ak; µA,CA)

µk,1
iid∼ U(µk,1;0,T1)

µk,2
iid∼ U(µk,2;0,T2)

σ iid∼ G(σ − t|α,β )

ϕi
iid∼ U(ϕi ;0,1)

wherek ∈ {1, · · · ,kmax} andK ≤ kmax. α,β ,µA,CA andt > 0
are assumed known.T1 and T2 are the dimensions of the im-
age which we reconstruct.N, U , andG denote normal, uniform,
and Gaussian distribution respectively. Since the trans-dimensional
MCMC is a generalisation of fixed dimensional MCMC, the over-
all parameter space forθ can be written as a countable union of
subspaces having different dimensionality, [15]

Owing to the linear Gaussian assumption forA and the likeli-
hood, we can removeA1:K by analytical integration,

P(µ1:K ,σ ,ϕ1:ϑ |Y) =
∫

P(µ1:K ,A1:K ,σ ,ϕ1:ϑ |Y)dA1:K

=
∫

P(Y,A1:K |µ1:K ,σ ,ϕ1:ϑ )dA1:KP(µ1:K ,σ ,ϕ1:ϑ )

= P(Y|µ1:K ,σ ,ϕ1:ϑ )P(µ1:K ,σ ,ϕ1:ϑ ) (7)

The removal of the nuisance parameters makes RJMCMC
more efficient (Rao-Blackwellization). Note that althoughA1:K

is marginalised, we sequently require estimates ofA1:K and these
can be obtained from the full conditionalP(A1:K |µ1:K ,ϕ1:ϑ ,σ ,Y),
where required for estimation as in [17, 18]. The likelihood
P(Y|µ1:K ,σ ,ϕ1:ϑ ) is defined by

P(Y|µ1:K ,σ ,ϕ1:ϑ ) =
1

(2π)N|CA|1/2|Φ|1/2(σ2
e )(N−NA)/2

×exp

{
− 1

2σ2
e

(YTY +σ2
e µT

AC−1
A µA−φT Â)

}
(8)

whereÂ = Φ−1φ
Φ = XTX +σ2

eC−1
A

φ = XTY +σ2
eC−1

A µA

Here,N andNA are the number of elements in the vectorsY and
A1:K respectively.

3.1 Main procedure for RJMCMC

The RJMCMC for PR-NMR has the following procedure in this
paper:
• Propose a type of move from Birth, Death, Split, Merge, and

Dimension invariant.
• If the move type is Dimension invariant, RJMCMC samples pa-

rameters using a standard Metropolis-Hastings (MH) algorithm,
so that each unknown parameter is updated according to an ac-
ceptance probability

αK = min

{
1,

P(y|θ ′
1:K)P(θ ′

1:K)q(θ1:K ;θ ′
1:K)

P(y|θ1:K)P(θ1:K)q(θ ′
1:K ;θ1:K)

}
(9)

• If the move type is one of Birth, Death, Split, and Merge, RJM-
CMC follows a generalized MH step with acceptance probabil-
ities

αK′ = min

{
1,

P(y|K ′
,θ ′

1:K′ )P(K
′
)P(θ ′

1:K′ |K ′
)q1(K;K

′
)q2(θ1:K ;θ ′

1:K′ )

P(y|K,θ1:K)P(K)P(θ1:K |K)q1(K
′ ;K)q2(θ

′
1:K′ ;θ1:K)

}

(10)
Note that we do not require Green’s Jacobian terms in our algo-

rithm as in [18]. Note here thatθ andθ ′
are interpreted asµ1:K ,σ ,

i.e. Note also that the scaling factorsϕ1:ϑ are sampled using stan-
dard Gibbs step, not detailed here.

3.2 Dimension invariant moves

The RJMCMC is the same as MCMC in case of Dimension invari-
ant in that the dimension is fixed as in Eq. (9). For the Dimension
invariant, internal terms are designed for fixed dimensional MCMC.
In the Eq. (9),θ1:K has two different types of parameters,µ1:K and
σ . We estimate the parameters separately. That is, Dimension in-
variant move has two steps: one for position estimation and the
other for the peak width. The prior structure ofθ1:K is assumed to
be

P(θ1:K) = P(σ)
K

∏
k=1

P(µk)P(Ak) (11)

In order to make a simple but reasonable kernel function,
q(θ ′

1:K′ ;θ1:K), the parameters are proposed as follows:

θ
′
1:K ∼ q(θ

′
1:K |θ1:K) =

{
G(σ ′ − t|α,β )
N(µ ′

i,1|µi,1,ς2)×N(µ ′
i,2|µi,2,ς2)

whereς is assumed known.
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3.3 Other moves : Birth, Death, Split, and Merge moves

3.3.1 Prior distributions forK andθ1:K |K
The several moves in Eq. (10) have more complicated equations.
P(K) is a prior distribution for dimensionality and we use a uni-
form distribution for the random variableK. P(θ1:K |K) is a prior
distribution for the parameters. However, unlike the dimension in-
variant move, we only estimate the positionsµ1:K with the fixed
width σ to increase the acceptance ratios. Specific prior knowledge
may be applicable toP(µk|K) but in this paper we have assumed a
uniform distribution forP(µk|K).

3.3.2 A transition kernel for the dimension

q1(K
′ |K) proposes the new number of peaks. We apply several

moves such as Birth, Death, Split and Merge moves. All moves
have only one difference between the current step and the proposed
step. That is, the Birth and Split moves increase the number of peaks
by one and Death and Merge moves decrease it by one. Therefore,
the probability forq1(K

′ |K) is defined as

q1(K
′ |K) =

{
1 for Birth
1
K for Death, Split and Merge (12)

3.3.3 A transition kernel for parameters : Birth and Death moves

q2(θ
′
1:K′ |θ1:K) consists of two elements,µk,1 andµk,2 for the cen-

tre position of thekth peak respectively. In Birth and Death moves,
the transition kernel function is a random map. Thus the transi-
tion probability is defined the same as the prior distribution of the
parameters. Therefore, this term in the RJMCMC is canceled out.
WhenP(K) andP(K

′
) follow a uniform distribution, Eq. (10) is

defined as

αK′ = min

{
1,

P(y|K ′
,θ ′

1:K′ )q1(K;K
′
)

P(y|K,θ1:K)q1(K
′ ;K)

}
(13)

whereθ
′
1:K′ ∼ q2(θ

′
1:K′ ;θ1:K) = P(θ

′
1:K′ |K ′

)

3.3.4 A transition kernel for parameters : Split and Merge moves

Since Split and Merge moves may work with specific geometric
maps rather than random maps, their transition kernels may be dif-
ferent from the Birth and Death moves. For example, ifµi is se-
lected to be split,µ ′

i may be chosen byN(µ ′
i ; µi ,ω2) whereω is

the specific range for Split. Both moves depend upon the previous
parameters and the probabilities of the Split and Merge moves in a
peak are designed by

µ
′
m ∼ q2(µ

′
m|µk) = N(µ

′
m; µk,λ ) for Split

µ
′
n ∼ q2(µ

′
n|µk) = N(µ

′
n; µk,λ ) for Split

µ
′
k ∼ q2(µ

′
k|µm,µn) = N(µ

′
k; µ̄ ,υ) for Merge





µ̄ = µm×ωm+ µn×ωn

ωm = Am
Am+An

ωn = An
Am+An

(14)

whereλ andυ are assumed known.

3.4 Estimating amplitudes,A1:K

Finally, we sample amplitude parameters from

A1:K ∼ P(A1:K |Y,CA,µA,σ2
e ) = N(Â,σ2

e Φ−1) (15)

4. RESULTS

4.1 Experimental data

Fig. (1) shows the experimental data set for reconstruction of NMR
spectra using RJMCMC. They are projections of13C15N correla-
tion peaks in the 700MHz HNCO spectrum of the proteinHasA.

The projection angles are determined by the ratio of the evolution
increments∆t2/∆t1. Only 6 projections with angles+300, −300,
+500, −500, 00 and +900 are used to reconstruct NMR spectra
having 16 peaks.

0 200 400
0

100

200
+300

0 200 400
0

100

200
−300

0 200 400
0

100

200
+500

0 200 400
0

100

200
−500

0 200 400
0

100

200
00

0 200 400
0

100

200
900

Figure 1: Experimental NMR Projections

Figure 2: A contour of an experimental target map

Fig. (2) shows the contour image of a desired target map. The
F1F2 plane extracted from the full three-dimensional HNCO exper-
iment onHasA, performed by the conventional method where both
evolution times are incremented independently. The 16 peaks in-
clude a doublet and very weak peaks as in Fig. (2).

4.2 Convergence

RJMCMC runs 40,000 iterations including 20,000 sampling and
20,000 burn-in periods. The initial state is randomly selected with a
random number of peaks. All moves are retrieved in each iteration -
Birth, Death, Split, Merge and Dimension invariant forµ1:K andσ .
Fig. (3) shows the trajectory of the number of peaks (top) and the
probability densityP(K|y) of the number of peaks (bottom) for the
simulation. We can see that RJMCMC arrives at a stationary state
aroundK = 20. Fig. (4) shows the trajectory of the peak width (top)
and its probability density functionP(σ |y) (bottom). To plot the
P(K|y) andP(σ |y), we useksdensityin Matlab withnpoints= 100
andwidth= 1. As in both figures, the number of peaks,K and the
peak-width,σ follow an almost normal distribution with mean20
and2.9 respectively.
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Figure 3: The number of peaks of an image from RJMCMC

4.3 Comparison

We compare the results of RJMCMC with that of maximum entropy
[12] which is a well-known method in reconstruction. Fig. (5) and
(6) show that the reconstructed image from maximum entropy has
serious problems with the poor detection of peaks and the incorrect
intensities of detected peaks. In comparison, RJMCMC detects al-
most all peaks including very small peaks as in Fig. (7) and (8).
In addition, although Monte Carlo methods are known to be slow,
RJMCMC reconstruction may be faster than maximum entropy re-
construction which is based on pixel-by-pixel estimation, since the
RJMCMC reconstruction estimates a far smaller number of param-
eters. However, a weak peak and a doublet are not detected in Fig.
(7). The peaks are located at(174,122), and(177.8,123.1) in Fig.
(2). The weakest peak at(177.8,123.1) is also detected but a few
artifacts appear as the contour levels decrease. However, we can-
not find the doublet at(174,122) in very low contour levels. Even
though RJMCMC does not detect a few weak peaks, it gives much
better results than any other approaches including Maximum En-
tropy. In time comparison, RJMCMC reconstruction takes 80 min-
utes while Maximum Entropy reconstruction takes 30 minutes with
this experimental data on a computer with the processor speed of
1.73GHz.

5. CONCLUSION

With a small number of projections, Projection Reconstruction
NMR (PR-NMR) can reconstruct multi-dimensional NMR spectra
efficiently. In this paper, Reversible Jump Markov Chain Monte
Carlo (RJMCMC) is applied to reconstruct discrete NMR spectra
from a small number of projections. RJMCMC searches for the
number of peaks and widths, positions, and amplitudes of the peaks
automatically. RJMCMC reconstruction gives a much better image
than Maximum Entropy reconstruction. Also, it is known that NMR
suffers from noise and Maximum Entropy reconstruction does not
work well for a noisy image. However, RJMCMC reconstruction
is very robust against noise since RJMCMC reconstruction uses

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

iterations

pe
ak

 w
id

th

−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

peak width (σ)

P
(σ

|y
)

Figure 4: Peak-width from RJMCMC

a shape constraint via the peak-by-peak approach and an explicit
noise model.
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