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ABSTRACT 2. MODELS FOR MULTIDIMENSIONAL NMR

Reconstruction of an image from a set of projections has beeffeconstruction of multidimensional NMR spectra from a small
adapted to generate multidimensional nuclear magnetic resonanBgmber of projections can be achieved by two strategies: pixel-
(NMR) spectra, which have discrete features that are relativelyy-Pixel modeling and peak-by-peak modeling. While pixel-by-
sparsely distributed in space. For this reason, a reliable reconstrueixel modeling determines all pixels on an image individually in
tion can be made from a small number of projections. This newierms of the given projections, the peak-by-peak approach recon-
concept is called Projection Reconstruction NMR (PR-NMR). InStructs an image using a finite collection of specific peak shapes.
this paper, multidimensional NMR spectra are reconstructed by Ré=ven though the peak-by-peak model is an idealisation of reality,
versible Jump Markov Chain Monte Carlo (RIMCMC). This statis-it iS @ very reasonable assumption, in that the NMR peak shape
tical method generates samples under the assumption that each p&ak be well approximated as a specific shape such as Gaussian or
consists of a small number of parameters: position of peak centrekorentzian. In the peak-by-peak approach, each peak consists of
peak amplitude, and peak width. In order to find the number of€ntre position, amplitude, and peak-width. Peak-by-peak estima-
peaks and shape’ RJMCMC has Severa| moves: b”'th’ death, meré@,n can be more efficient since it m(_)dels exp|ICIt|y the Sparseness
split, and invariant updating. The reconstruction schemes are testé@fierent in the NMR spectra. Thus, in the peak-by-peak approach,
on a set of six projections derived from the three-dimensional 70@ve do not have to directly update all areas of the image as would be
MHz HNCO spectrum of a protein HasA. done in the plxel-py-p|xel app(oach._ Another interpretation is that
a solution can rapidly be obtained since the number of parameters
for peak-by-peak estimation is much smaller than that for pixel-by-
1. INTRODUCTION pixel. Here, then, we define the underlying image model at pixel

Multidimensional NMR spectroscopy is well known to be very use_locanonx with a finite collection of peaks,

ful for protein structure determination. However, it has a seri- K

ous drawback, speed. The minimum measurement time of an N- S(x) = z AO(X| i, Z) (1)
dimensional NMR experiment increases as the number of dimen- K=1

sions increases. This makes multidimensional NMR spectroscopy

intractable in practice. For these reasons, several investigators have 1 1 Teo1

been trying to speed up these measurements by more efficient ap- #(X|Hk:Z) = detzm) expy — 3(X— H)" 27 (X— i)
proaches. Many approaches based on the demands are traced back

to the concept ofaiccordion spectroscofl]. GFT-NMR [2] and whereS(x) is the intensity at the image positiorand
Projection Reconstruction NMR (PR-NMR) [3, 4, 5, 6, 7] address

this problem. PR-NMR considered in this paper speeds up the ac- X = [X17X2]T

quisition of multidimensional NMR spectra by reconstructing them e = [Hcw }T

from a small number of projections. The procedure is related to that K K1) Ph2

used in X-ray, computed tomography (CT) and fMRI which have y = ol

been approached by several statistical methods such as maximum

likelihood [8], EM algorithm [9], maximum entropy [10, 11, 12] In Eq. (1),Ax is the amplitude okth peak. The radial function

and maximum a posteriori using Gibbs prior [13]. We have appliedp denotes the specific peak shape such as Gaussian, Lorentzian, or

several of these methods to PR-NMR [14]. However, these methodsaplacian shape. In this paper, we use the Gaussian shape for the

are best suited to CT and X-ray tomography where the physiologiradial functionsp, which has two componentgi for centre posi-

cal object is continuous, in contrast to the discrete peak property dfon ando for peak-width. In NMR spectroscopy, the width of the

an NMR spectrum. Therefore, we propose RIMCMC to reconstrugbeaks are considered almost constant. Thus, we use a single width

the discrete NMR spectra. RIMCMC searches for the number angarameter in order to reduce the total number of parameters, and

the shape of discrete peaks under the assumption that each discréiis speeds up RIMCMC. However, in earlier work we also experi-

peak consists of a small number of parameters: centre position, amented successfully with variable peak widths within each image.

plitude, and line-width. In PR-NMR, input data are a small number of projections ob-
This paper mainly consists of three sections. In the first sectained at different projection angles. Suppose thi the projec-

tion, we define the models for multidimensional NMR. The nexttion data. A; ands stand for thath projection angle and the sam-

section demonstrates the design of Bayesian models for the PRle index into a projection, respectively=1,---,3. ¢; denotes

NMR. RIMCMC algorithms are explained in this section as well.a scaling factor, which varies with the projection numberThe

In the last section, RIMCMC reconstruction is compared with Max-PR-NMR data is then defined as

imum Entropy reconstruction with an experimental data with 6 pro- _

jections. Yo = $iR(S Ai,9) + ¢, 2
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whereY, is thesth data-point ofth projection taken at anghg and  is marginalised, we sequently require estimates\pf and these

R(S Ai,s) is the projection function for thé&h angleA; and data can be obtained from the full conditionB{Aq |U1k, $1:9.0,Y),

point as follows: where required for estimation as in [17, 18]. The likelihood
P(Y|p1x, 0, $1:5) is defined by

RS A,S) = /j; /:, S(X)3(x COSAi + XosinAi — S)dxidxe  (3) .

P(Y|H1:K7U7¢l:z9) = N 1
S S /2|d|1/2(g2)(N=Na)/2
Suppose that the number of data points in each projectibhasd (2m|Cal /<l @ %(0¢) )
the number of peaks Is. Eq. (2) can be written in the linear model y exp{f 1 (YTY+ UZHXC,KlIJA* (pTA)} ®)
e

framework using vector notation as follows: 2092
Y = XAyx +ewheree S N(e;0,021) @) )
_ . o whereA = o lp
whereoe is assumed knownY is the stacked vector of projection T 21
data, defined as follows: ® = X' X+05C,
¢ = X'Y+02C ua

T_|yl... vyl ... yd9 ... y?
Y= YD Vi Y Y ®) Here,N andN, are the number of elements in the vectérand

A1« respectively.
X denotes the integrated peaks obtained by substituting Eq. (:9 .
into Eq. (3) in terms of angled and scaling factorg andAqx = -1 Main procedure for RIMCMC
[A1,A2,---,Ac] is a vector of peak amplitudes.is a noise vector. The RIMCMC for PR-NMR has the following procedure in this
When we haved projections,X is a matrix with size(M&) x K paper:
andAqx is aK x 1 vector. The size of ande vectors is(M3). e Propose a type of move from Birth, Death, Split, Merge, and
For instance, when we hade= 4 projections withM = 100points Dimension invariant.
agg the |rggge3hasd3;3peaks, the .S'Z? of matfites, andAik are o i the move type is Dimension invariant, RIMCMC samples pa-
400x 1, 400 3, and3 x 1 respectively. rameters using a standard Metropolis-Hastings (MH) algorithm,
3. BAYESIAN MODELS FOR PR-NMR so that each unknown parameter is updated according to an ac-

ceptance probability

The peak-by-peak approach presents a computational challenge in , ) )
that the number of peaks are not known apriori. In order to estimate . P(y|6;.« )P(6;.)a(O1k; 01 )
the number of peaks, trans-dimensional methods can be applied. ak =minq 1, Py 811 )P(B15)q(6, : 1) ©)
One of the most useful trans-dimensional approaches is Reversible ik 1K)AF1x; 01K
Jump Markov Chain Monte Carlo (RIMCMC) [15, 16, 18, 19], a
promising approach that we adapt for finding peaks in multidimen-
sional NMR spectroscopy.

Denote by6 € © the parameter vector associated with the
peak indexed bk € k, then forK peaks we have the model:

o |f the move type is one of Birth, Death, Split, and Merge, RIM-
CMC follows a generalized MH step with acceptance probabil-
ities

— 1P(y|K/,Gi:K,)P(K)P(Gi:K,\K/)ql(K;K')qg(Gl;K;GizK,)
“ " P(YIK, 81 )P(K)P(Bu [K) a1 (K" K)a2(8, 1 61k )

Ok = (Hik,Auk,0,¢1:9) wherepyk = (H1,1:k, H2,1:x X6) (10)
A iid N(Ag; ta, Ca) Note that we do not require Greep’s Jacobian terms in our algo-
iid . rithm as in [18]. Note here th& and8 are interpreted ag1k, 0,
K1~ U(tk1;0,T) i.e. Note also that the scaling factaps.s are sampled using stan-
U2 4y (U 2;0,To) dard Gibbs step, not detailed here.
iid
o ~ G(o-tla,p) 3.2 Dimension invariant moves

id
i ~ U(¢i;0,1) The RIMCMC is the same as MCMC in case of Dimension invari-
ant in that the dimension is fixed as in Eq. (9). For the Dimension
wherek € {1,---,kmax} andK < kmax a,B,Ha,Ca @andt >0 jnyariant, internal terms are designed for fixed dimensional MCMC.
are ass_umed known.T; and T, are the dimensions of the IM-" | the Eq. (9),61« has two different types of parametefg« and
age which we reconstructN, U, andG denote normal, uniform, 5 \we estimate the parameters separately. That is, Dimension in-
and Gaussian distribution respectively. Since the trans-dimensiongliant move has two steps: one for position estimation and the
MCMC is a generalisation of fixed dimensional MCMC, the over- 5iher for the peak width. The prior structure &fx is assumed to
all parameter space fd can be written as a countable union of 4

subspaces having different dimensionality, [15]

Owing to the linear Gaussian assumption foand the likeli- K
hood, we can remov&; by analytical integration, P(61x) =P(0) |_| P(uk)P(Ax) (11)
k=1
: In order to make a simple but reasonable kernel function,
P(H1x,0,01:9]Y) = / P(p1x,Ar, 0, 91:9[Y)dALK q(Gi_K, ; B1x), the parameters are proposed as follows:
= /P(Y7A1:K|IJ1:K7U7 ¢1:9)dALKP(H1k, 0, 91:9)
: : : G(d —t|a,p)
=P(Y K0, 01: P K, 0,01 7 61« ~ (6. 6: = ! !
(Ylp1k, 0, ¢1:9)P(Hak, O, P1:9) (7) 1k ~ A(6rk |61k ) {N(Hi‘ylﬂi,l,CZ) < N(H 5|12, 62)

The removal of the nuisance parameters makes RIMCMC
more efficient (Rao-Blackwellization). Note that althoughk whereg is assumed known.
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3.3 Other moves : Birth, Death, Split, and Merge moves The projection angles are determined by the ratio of the evolution
3.3.1 Prior distributions foik and 6y |K incrementsAt, /Aty Only 6 projections with angles-30°, —30°,
' +50°, —50°, 0° and +90° are used to reconstruct NMR spectra

The several moves in Eq. (10) have more complicated equationﬁ.awing 16 peaks

P(K) is a prior distribution for dimensionality and we use a uni-
form distribution for the random variabl€. P(61k|K) is a prior

distribution for the parameters. However, unlike the dimension in-
variant move, we only estimate the positionsk with the fixed 200 200
width o to increase the acceptance ratios. Specific prior knowledge 100 100

may be applicable t&(u|K) but in this paper we have assumed a WM
uniform distribution forP(p|K). 0 okl s

3.3.2 A transition kernel for the dimension +50
200 200

ql(K’\K) proposes the new number of peaks. We apply several

moves such as Birth, Death, Split and Merge moves. All moves NOW woww
0

have only one difference between the current step and the proposed 0
step. Thatis, the Birth and Split moves increase the number of peaks 0 200 400 0 200 o400
by one and Death and Merge moves decrease it by one. Therefore, g 0 200 %
the probability forg; (K |K) is defined as 100 100
/ 1 for Birth Y VN S 0
u(K[K)= { L for Death, Split and Merge (12) 0 200 400 0 200 400

3.3.3 Atransition kernel for parameters : Birth and Death moves

qz(Gi_K, |61k) consists of two elementgy 1 and y » for the cen- Figure 1: Experimental NMR Projections

tre position of thekth peak respectively. In Birth and Death moves,
the transition kernel function is a random map. Thus the transi-

tion probability is defined the same as the prior distribution of the F2
parameters. Therefore, this term in the RIMCMC is canceled out. (ppm)]
WhenP(K) andP(K') follow a uniform distribution, Eq. (10) is i
defined as 107
JR— P(YK', 8, . )a1(K;K) 13 115 0 -
K’ - gl ’, ( ) ] @
P(yK, 81 )t (K’ K) ] '
U ! ! ! 120—, o
whereGlzK, ~ qZ(leKr ; Gl;K) = P(E)l:K, ‘K ) E ok @ 09 0
o
3.3.4 Atransition kernel for parameters : Split and Merge moves 125? ¢ 9
Since Split and Merge moves may work with specific geometric 1301 ® o
maps rather than random maps, their transition kernels may be dif- ]
ferent from the Birth and Death moves. For exampley;ifs se- 135_3
lected to be split,ui/ may be chosen bp&l(u{;ui,wz) wherew is ]

the specific range for Split. Both moves depend upon the previous 180 178 176 174 172 170 168 166
parameters and the probabilities of the Split and Merge moves in a

peak are designed by F1 (ppm)
“;n ~ qZ(H;n|“k) = N(ll;ni U, A) for Split Figure 2: A contour of an experimental target map
Hn ~ Ge(knlkk) = Nkni b, A) for Split Fig. (2) shows the contour image of a desired target map. The
ll|/< ~ Q2(Il|/<\llm,lln) - N(u,/(;ﬁ, v) for Merge F.1F> plane extracted from the full three-dimensional HNCO exper-

iment onHasA performed by the conventional method where both

H'= Hm X G+ Hn X Gh evolution times are incremented independently. The 16 peaks in-

_ _An
W = AmAj]’An (14)  clude a doublet and very weak peaks as in Fig. (2).
“h = Aety

4.2 Convergence

whereA andu are assumed known. RJMCMC runs 40,000 iterations including 20,000 sampling and
20,000 burn-in periods. The initial state is randomly selected with a
random number of peaks. All moves are retrieved in each iteration -
Finally, we sample amplitude parameters from Birth, Death, Split, Merge and Dimension invariant forx ando.
. Fig. (3) shows the trajectory of the number of peaks (top) and the
Ark ~ P(Ark|Y,Ca, Ha, 02) = N(A, g2 (15)  probability densityP(K|y) of the number of peaks (bottom) for the
simulation. We can see that RIMCMC arrives at a stationary state
4. RESULTS aroundK = 20. Fig. (4) shows the trajectory of the peak width (top)
and its probability density functioR(aly) (bottom). To plot the
P(Kl]y) andP(aly), we useksdensityn Matlab withnpoints= 100
Fig. (1) shows the experimental data set for reconstruction of NMRandwidth = 1. As in both figures, the number of peaksand the
spectra using RIMCMC. They are projections'#E1°N correla-  peak-width,o follow an almost normal distribution with me&0
tion peaks in the 700MHz HNCO spectrum of the proteiasA and2.9 respectively.

3.4 Estimating amplitudes,A;

4.1 Experimental data
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Figure 3: The number of peaks of an image from RIMCMC Figure 4: Peak-width from RIMCMC
4.3 Comparison a shape constraint via the peak-by-peak approach and an explicit
noise model.

We compare the results of RIMCMC with that of maximum entropy
[12] which is a well-known method in reconstruction. Fig. (5) and 6. ACKNOWLEDGEMENTS
(6) show that the reconstructed image from maximum entropy has

serious problems with the poor detection of peaks and the incorrest/e would like to thank Prof. Ray Freeman (Jesus College, Cam-
intensities of detected peaks. In comparison, RIMCMC detects abridge University) and Dr. Eriks Kupce (Varian Ltd., Oxford) for
most all peaks including very small peaks as in Fig. (7) and (8)their assistance, advice, and for providing the data sets we use.

In addition, although Monte Carlo methods are known to be slow,
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