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ABSTRACT

We describe a simple model of musical structure and two
related methods of extracting a high-level segmentation ofa
music track from the audio data, including a novel use of hid-
den semi-Markov models. We introduce a semi-supervised
segmentation process which finds musical structure with im-
proved accuracy given some very limited manual input. We
give experimental results compared to existing methods and
human segmentations.

1. INTRODUCTION

This paper introduces a simple model of musical structure,
and shows how it can be either formalised directly as a seg-
ment model, or used to inform a clustering approach to au-
dio segmentation. Although the model is very general, and
could be applied to symbolic data (notes, chords, etc.) drawn
from score representations of music, our focus here is on its
application directly to audio data, in order to extract high-
level musical structure from audio tracks with at most a small
amount of human intervention. Knowledge of this structure
has immediate practical applications in the context of audio
or video editing, enabling the development of features such
as ‘jump to start of next phrase’, ‘align with current musical
phrase’, etc. It leads easily to the automatic extraction ofmu-
sical summaries or ‘thumbnail’ segments, for use in browsing
and searching the large audio collections which are rapidly
becoming commonplace through the popularity of download
sites, MP3 players and associated technologies. Compar-
ison of segment models also offers possible new methods
for content-based audio retrieval, similarity search and music
recommendation.

Early research into automatic segmentation of musical
audio [1, 2] had some success in the partial extraction of
high-level musical structure by a self-similarity search over
spectral features to find repeated sections. This approach has
some drawbacks: only some sections are identified and la-
belled, the choice of distance metrics and thresholds for sim-
ilarity is somewhat ad hoc, and the search is computationally
expensive, requiring the calculation of pairwise distances
between all analysis frames within a track. Self-similarity
search has been extended in [3, 4] to extract the structure
of complete pop tracks by incorporating information from
beat-tracking and applying a set of heuristics to identify seg-
ments as being one of a very small number of specific types
(instrumental, verse or chorus). These methods make some
highly limiting assumptions about the structure being sought
that apply only to conventional pop music. Hidden Markov
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models (HMMs), where the hidden states correspond to seg-
ment types, are used for segmentation in [5], and a two-pass
method, in which candidate segment boundaries are detected
and the intervening segments then used to initialise an HMM,
is outlined in [6]. These approaches are much less restrictive,
but unfortunately the chosen model implicitly defines a geo-
metric probability distribution for segment durations, which
is not what we observe in real music, where segment lengths
are typically multiples of some basic phrase length, for ex-
ample 8, 16 or 32 bars, only very rarely taking other values.

In our own work [7] we have partially addressed the
issue of modelling expected segment lengths realistically
within a clustering framework, by including a term express-
ing the relative unlikelihood of segments being shorter than
an experimentally-determined minimum duration. In this pa-
per we introduce a method for estimating the underlying base
phrase length of a piece of music from audio data, and show
how this can either be passed to our clustering method, or
used to initialise a different model for high-level segmenta-
tion, which allows us to specify a full probability distribution
for segment lengths.

Although unsupervised approaches to segmentation have
been shown to achieve results similar to human judgement
in some cases, research into parallel problems in image seg-
mentation [8] suggests that a small amount of supervision
may offer large gains in segmentation accuracy. In the case
of musical audio segmentation, a major cause of fragility in
unsupervised methods is the difficulty of providing good ini-
tial parameter values to models such as HMMs, whose train-
ing algorithms are well known to be susceptible to poor ini-
tialisation [9]. We address this problem here with a simple
semi-supervised approach to segmentation.

The organisation of the rest of this paper is as follows:
section 2 describes the musical model and the audio fea-
tures used; section 3 describes how a segment-length distri-
bution is estimated; section 4 introduces the new segmen-
tation methods; section 5 describes the semi-supervised ap-
proach and illustrates output segmentations; section 6 evalu-
ates the performance of the methods in relation to previous
work and some manual segmentations; section 7 outlines fur-
ther work.

2. A MODEL OF MUSICAL STRUCTURE

2.1 The nature of musical structure

We can describe the structure of most music as follows. Ac-
tivity at the level of the beat, i.e. notes to be sung or played
by particular instruments, is organised into regular phrases,
typically in Western music of 4 or 8 bars, where each bar con-
tains 3 or 4 beats. These phrases are concatenated, whether
by the composer on manuscript paper, or the producer or mu-
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sician in the recording studio, to form structural sections, or
segments, in accordance with the stylistic norms of the par-
ticular musical genre in question. A piece is then constructed
from a sequence of segments of various types, in an order
again largely determined by its genre.

While this is clearly a weak account of the real act of
composition, it does suggest a straightforward formal model
of musical structure that we can reasonably expect to fit a
great many pieces of music, for example most popular, folk,
world and much classical music. We assume further that we
have some way of labelling each beat or frame of the music in
such a way that beats or frames which are musically similar
are assigned the same label. A piece can then be represented
as a sequence of labels{yt},t = 1,2, ...,T , and the task of
segmentation consists of assigning each of theyt to one of
a set of segment-typesQ = {q1,q2, ...,qM}, subject to suit-
able expectations, which we can express as conditional prob-
ability distributions, on the resulting segment durationsand
the particular sequences of labels observed in each segment-
type.

2.2 The observation sequence

Given an audio track, we aim to label each beat as belonging
to one ofN possible timbre-types dividing the overall space
of timbre used in the track. We first estimate the beat using
a beat-tracking algorithm [10] and then extract constant-Q
spectra at18-octave resolution, using a hop equal to the beat-
length (typically 300-400ms) and a window of three times the
hop size. The spectra are normalised and subjected to Prin-
cipal Component Analysis. Finally we combine the first 20
PCA components and the normalised envelope to yield 21-
dimensional feature vectors. We train anN-state HMM on
the sequence of feature vectors, with a single Gaussian out-
put distribution for each state, and a single covariance matrix
tied across all states. We then Viterbi-decode the features
using the trained model to give the most likely sequence of
timbre-types. In music with a relatively small overall timbre
space, such as simple verse-chorus songs, we observe that the
labelled timbre-types correspond clearly to particular combi-
nations of notes performed with a similar instrumentation.
Figure 1 shows a typical sequence of timbre-type labels. The
number of timbre-typesN should be large enough to show
clear variation in the labels observed in segments of differ-
ent type, but small enough for the computational demands
of (and the number of parameters to be learned by) a formal
model to remain manageable. Following experiments over a
small test set of tracks we use a value ofN = 40. Note that
although we use approximately beat-length analysis frames
in this paper, this is not a requirement of our approach, but
rather is intended i) to aid clarity of discussion and ii) to limit
computational requirements by keeping the maximum seg-
ment length to a modest value. In music where full beat-
tracking is possible, we are able to use strictly beat-length
frames, but we reserve discussion of this for a future paper.

3. ESTIMATING EXPECTED SEGMENT LENGTHS

Periodicity and rhythmic structure at the beat and bar level
have previously been estimated from the autocorrelation or
‘beat spectrum’ of suitable extracted features [11, 12]. We
extend this to search for periodicity at the phrase level by
a direct analysis of the sequence of timbre-type labels. We
first create normalised histograms{xt} of timbre-types over a
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Figure 1: Sequence of timbre-types against manual segmen-
tation. Note how related segments (shown in same back-
ground shade) contain similar sequences of states.
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Figure 2: Approximate autocorrelation of timbre-type se-
quence, showing first strong peak at 4-bar phrase length.

moving window of lengthw. We then sum pairwise distances
between histograms at lags 1≤ l ≤ D to give an approximate
autocorrelationB(l) = ∑T−l

t=1 −dKL(xt ,xt+l) wheredKL(x,x′)
is a symmetrised Kullback-Liebler divergence, reflecting the
relative likelihood of the two histograms being drawn from
two separate or one combined distribution of timbre-types,
and is given by

dKL(x,x′) =
N

∑
i=1

x(i) log
x(i)
q(i)

+ x′(i) log
x′(i)
q(i)

whereq(i) = x(i)+x′(i)
2 .

Figure 2 shows an example of the resulting function, in
which candidate phrase lengths appear as peaks. The de-
gree of smoothing ofB(l), and therefore the smallest phrase
length to be considered, is controlled by the histogram win-
dow sizew. To estimate a base phrase lengthdpl, we first
calculate a moving baselineB0(l) by smoothingB(l) with a
median filter of length 5, and then pick the larger of the first
two peaks inB(l)−B0(l). In experiments over a test set of
popular music,dpl was reliably found to be a four-bar phrase
length when using a histogram window size ofw = 7 (with
beat-length frames). Given this base phrase length, it is sim-
ple to estimate the overall distribution of segment lengthsfor
a track, because in most music the length of the great ma-
jority of segments is some multiple ofdpl, as illustrated in
Figure 3, which shows the distribution of segment lengths
over the test set according to expert human segmentations.

4. SEGMENTATION METHODS

4.1 The segmental or hidden semi-Markov model

In an HMM [9], at each timet the system is in one ofM
states{q1,q2, ...,qM} and generates an observationyt ac-
cording to a distributionP(yt |Qt = qi) = bi(yt). The sys-
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Figure 3: Distribution of segment lengths over test set.

tem then makes a transition to another state with probabil-
ity P(st+1 = q j|Qt = qi) = ai j. Consequently i) the dura-
tion d for which the system stays in any given statei has an
implicit geometric distributionP(d) = ad−1

ii (1− aii); and ii)
the observations generated while in this state are independent
of one another and identically distributed. Although HMMs
have proved effective in modelling processes where i) and ii)
do not necessarily hold, including sequences of musical au-
dio features considered at the frame timescale (see [13] for
a recent example), a different model is clearly required for
high-level musical structure.

The segmental or hidden semi-Markov model (HSMM)
[14, 15] extends the HMM to remove these constraints. In an
HSMM, the state durationd takes values 1,2, ...,D according
to an explicit distribution, and thed observations generated
by a given statei ending at timet are modelled by a joint
distributionP(yt−d+1, ...,yt |i). The system enters an initial
statei according to a distributionP(i) = πi and selects a du-
rationd according toP(d|i). It then generatesd observations
according toP(y1, ...,yd−1|i), before making a transition to a
different statej, j 6= i according toP( j|i) = ai j. A duration is
chosen, and the corresponding number of observations gen-
erated, from the distributions for the new statej, before mak-
ing a transition to another state, and so on. The process con-
tinues untilT observations have been generated. Inference
in the HSMM can be performed with the following forwards
and backwards recursions, where we writeFt = 1 if there is
a change of state at timet +1 (see [15] for a full derivation):

αt( j)
.
= P(Qt = j,Ft = 1,y1, ...,yt)

= ∑
d

P(yt−d+1, ...,yt | j,d)P(d| j)α∗
t−d( j)

α∗
t ( j) = ∑

i
αt(i)ai j

initialised byα∗
0( j) = π j and

βt(i)
.
= P(yt+1, ...,yT |Qt = i,Ft = 1)

= ∑
j

β ∗
t ( j)ai j

β ∗
t (i) =

D

∑
d=1

βt+d(i)P(d|i)P(yt+1, ...,yt+d |i)

initialised byβT (i) = 1.
State initial and transition probabilities can then be re-

estimated as

π̂i =
πiβ ∗

0 (i)

∑i′ πi′β ∗
0 (i′)

âi j =
∑T

t=1 αt(i)ai jβ ∗
t ( j)

∑ j′ ∑T
t=1 αt(i)ai j′β ∗

t ( j′)

and state duration probabilities as

P̂(d|i) =
∑t α∗

t−d(i)P(d|i)P(yt−d+1, ...,yt |i)βt(i)

∑d′ ∑t α∗
t−d′(i)P(d′|i)P(yt−d′+1, ...,yt |i)βt(i)

In the case of discrete observations, if we continue to
treat observations as conditionally independent, i.e.

P(yt−d+1, ...,yt |i) =
t

∏
t′=t−d+1

P(yt′ |i) (1)

the observation probabilities can be re-estimated as

P̂(k|i) =
∑t:yt=k ∑τ<t [γ∗τ (i)− γτ(i)]

∑t ∑τ<t [γ∗τ (i)− γτ(i)]

where γt(i)
.
= P(Qt = i,Ft = 1|y1, ...,yT ) ∝ αt(i)βt(i) and

γ∗t (i)
.
= P(Qt+1 = i,Ft = 1|y1, ...,yT ) ∝ α∗

t (i)β ∗
t (i).

The HSMM clearly meets the needs of the model out-
lined in 2.1, treating our sequence of beat or frame labels as
the observations and the underlying structural segments as
the succession of hidden states. For the time being we con-
tinue to treat observations as conditionally independent (1),
i.e. we assume that segment-types can be distinguished by
a characteristic distribution of labels (we presented someex-
perimental evidence for this view in [7]). Given the trained
HSMM, we can find the most likely sequence of segment-
types to have generated the observed labels by decoding with
a suitable extension of the Viterbi algorithm, based on the
following recursion forδt(i), the posterior probability of the
best state sequence ending in statei at timet:

δt(i) = max
d

δ ∗
t−d(i)P(d|i)P(yt−d+1, ...,yt |i)

δ ∗
t ( j) = max

i
δt(i)ai j

4.2 Segmentation by clustering

In [7] we introduced a method of clustering histograms of
timbre-types (similar to those we use for estimating the base
phrase length in section 3), subject to a constraint on the
expected minimum segment length. This constraint is ex-
pressed as a term based on the number of matching assign-
ments within a given neighbourhood. We previously used an
experimentally-determined constant for the neighbourhood
size, but now set the neighbourhood to beB = 2dpl + 1, i.e.
we consider labels withindpl beats to be relevant.

5. SEGMENTATION EXPERIMENTS

We carried out segmentation experiments using both these
methods on a small test set of 14 varied pop tracks from
the 1980s and 90s for which we have expert manual seg-
mentations prepared for the MPEG-7 working group, which
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show a wide range of formal structure. We segment se-
quences of timbre-types extracted as described in section
2.2 by constrained histogram clustering and using our own
HSMM toolbox implemented in Matlab. As the HSMM has
to learn a large number of parameters from relatively few ob-
servations, and because its training algorithm (Expectation-
Maximisation) guarantees a solution that is only a local min-
imum in the problem space, a good parameter initialisation
is essential. As outlined in 3, we have the strong expectation
that musical segments will be integer multiples of an under-
lying phrase length. We therefore initialise the state duration
distribution for all states of the HSMM to have strong proba-
bilities for mutiples ofdpl up to the maximum state duration
D, with very small non-zero probabilities for all other du-
rations. We use the following method to initialise the state
observation distributions of the HSMM:

5.1 Semi-supervised approach

We imagine that the user has opened a track in an audio
editor and now wishes to segment it. The user clicks and
drags twice to select two regions within the track, roughly
corresponding to segments of different types. We then
initialise two HSMM states with the distribution of timbre-
types found in each of these regions, and the remainder
randomly, to make up a total ofM states. We use a fixed
value of M = 6, suggested by the human groundtruths for
our test set, although in a real application the desired value
of M could easily be set interactively by the user. In our
experiments we simulate the user’s region selection by
choosing the first occurence of each of the two most frequent
segment types according to the groundtruth, but with each of
their boundary positions subject to a random error of up to 2
seconds.

We have found that the following procedure improves
Viterbi-decoding in the HSMM. After training we set state
duration probabilities for all states to zero for short durations
d where 2≤ d < dpl. This ensures that any unwanted frag-
mentary segments in the decoded state sequence will be ex-
actly of length 1, and can then easily be merged with a sim-
ple smoothing procedure. We observe that in some cases one
particular HSMM state becomes a ‘switching’ state, whose
occurences are all of length 1, for example separating two
segments of the same type in order to make up a total dura-
tion greater than the maximum state durationD allowed by
the HSMM.

Examples of machine segmentations using these meth-
ods are shown in Figure 3, together with the human
“groundtruth”. We observe that even in cases where clus-
tering method successfully finds the structure of the music,
the HSMM often gives more accurate segment boundary po-
sitions.

6. EVALUATION

Our approach places few hard constraints on output segmen-
tations. Using constant-Q features and the current form of
segment observation distributions in the HSMM, we simply
expect that segments of the same type will share a character-
istic overall pitch/timbre content. Our estimation of a base
phrase length encourages the methods to find a solution con-
sistent with the conventions of musical form, but there is
no guarantee that our results will agree with expert human

Alanis Morissette: Head Over Feet − groundtruth
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Britney Spear: Baby Hit Me One More Time − groundtruth
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Figure 4: Human (top) and machine segmentations of three
pop songs (segment-types relabelled for clarity).
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Figure 5: Evaluation of machine segmentations over test set:
1− f against 1−m (loosely ‘precision’ vs ‘recall’).

judgement. In our output we regularly observe details of
segmentation that do not accord with the “groundtruth” but
which are perfectly reasonable when evaluated subjectively,
for example where the last line of a chorus is identified as
a separate segment because the vocal line always jumps to
a much higher register. In general, the structure revealed
by machine segmentation will depend on the relationship of
the chosen audio features to the music in question. Whether
or not the machine segmentation is satisfactory consequently
depends to a large extent on the use to which it will be put,
and worthwhile reference groundtruths for testing will reflect
this.

Previous work in this field divides broadly into research
focussed directly on segmenting pop songs into instrumental,
verse and chorus sections [3, 4, 2] and more perceptually-
motivated approaches which can lead to a more finely-
grained segmentation, and are harder to evaluate [5, 6]. Al-
though we also have a broad range of applications in mind
for our segmentations (and use relatively detailed reference
segmentations), a simple evaluation of segment boundary ac-
curacy against a human reference segmentation is still one
useful comparative measure. Over our test set, using clus-
tering some 59% of groundtruth boundaries were found to
within 2 seconds. Using the semi-supervised HSMM, 72%
were accurate to within 2 seconds, and 82% to within 4 sec-
onds. These figures compare with 55% of boundaries found
within 2 seconds against a set of instrumental-verse-chorus
groundtruths in [4]. For comparison with our own previous
work, Figure 5 gives an idea of how well groundtruth seg-
ments are reproduced in machine segmentations, using mea-
sures of boundaries missedm and segments fragmentedf
developed in [16].

7. CONCLUSIONS

The methods described in sections 3 and 4 show how the
underlying base phrase length of a piece of music can be es-
timated directly from audio data and used in a formal model
of musical structure to produce automatic segmentations that
correspond closely to human judgement in many cases. A
semi-supervised method requiring only two ‘click and drag’
operations from the user produces segmentations in which
over 80% of the reference boundaries are found within a 4
second threshold, and 72% within 2 seconds.

Future work includes experimenting over a larger test set
to produce segmentations that are optimal for various appli-
cations, and extending the HSMM to handle continous data

so that it can be trained directly on audio features.
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