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ABSTRACT
Synthetic Aperture Sonar (SAS) imagery is currently used
in order to detect underwater mines laying on or buried in
the sea bed. But the low signal to noise ratio characteriz-
ing these images leads to a high number of false alarms. In
this paper, a new method of detection based on a statistical
hypothesis test is presented. The proposed method can be
divided into two main steps. Firstly, a statistical model of
the speckle noise is described. A statistical hypothesis test
is then performed and an evaluation of the performances is
proposed.

1. INTRODUCTION

The detection of underwater mines in the sea bed is a signi-
ficant problem. Indeed, mines used during battles can derive
and appear near coasts where the sea traffic is considerable.
Damages caused by an explosion can be a real disaster. Low
frequency Synthetic Aperture Sonar (SAS) is an effective
way to solve this problem. SAS systems give high resolu-
tion images of the sea bed with low frequency emission [1].

But these images are built with speckle which gives a
granular aspect and disturbs its interpretation. Classical
methods of detection and classification propose to use shad-
ows of the sought objects [2]. These methods cannot be em-
ployed in buried objects detection because the shadows are
not visible. Therefore, the method presented in this paper is
based on a segmentation of the echoes reflected by the ob-
jects. Some papers deal with the use of smoothing filters [3],
other on statistical model and a representation in the mean-
standard deviation plan [4]. Authors proposed to use higher
order statistics [5]. Parameters can then be combined to de-
tect efficiently the sought objects [6].

A detection method using statistical hypothesis test is
presented in this paper. The first step consists in a statistical
model description of the speckle (section 2). Thanks to this
model, a statistical hypothesis test based on the Kolmogorov
distance is then proposed (section 3). Finally, an evaluation
of the performances is proposed (section 4).

The detection method is tested on data recorded by
GESMA during the BMC’99 at Lanvéoc (Finistère, France).
This image represents a sea bed region of about 11m by 13m,
with a resolution of 6cm in both dimensions (Fig. 1). This
image contains three buried mines (b, c, and e), one buried

rock (d) and one mine laying on the sea bed (f) and an unde-
fined object (a).
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Figure1: SAS imagecontaining buried objects.

2. STATISTICAL MODELS

2.1 Speckle noiseand theRayleigh law

Imagesprovided by acoherent system likeSASarebuilt with
speckle. The study of the responseρ of a resolution cell is
necessary to obtain a statistical model of the amplitude. The
sensor receives theconstructiveand destructive interferences
of all the waves reflected by the Nd diffusers contained in a
resolution cell [7]:

ρ =
Nd

∑
i=1

ai exp{ jϕi} = A ejφ = X + jY (1)

We assume X and Y independent Gaussian random vari-
ables. The amplitude A =

√
X2 +Y2 is then described by a

Rayleigh probability density function defined as follows:

fY(y) =
y−min

α2 exp

{
− (y−min)2

2α2

}
u(y−min) (2)
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with u the Heaviside function (u(x) = 1 if x > 0, u(x) = 0
else),α the scale parameter andmin the offset. This last
parameter takes into account the minimum of the amplitude
if it is not null.

This model is suitable when the number of elementary
scattersNd on a resolution cell is large. But SAS providing
high resolution images, the number of diffusers present in a
resolution cell decreases significantly. The amplitudeA is
therefore better described by a Weibull probability density
function.

2.2 The Weibull law

2.2.1 Definition

The probability density function of a Weibull law is defined
with three parameters as follows:
• β the scale parameter
• c the shape parameter
• min the offset

fY(y) =
c
β

(
y−min

β

)c−1

exp

{
−
(

y−min
β

)c}
u(y−min)

(3)

2.2.2 Estimators

The parametersβ , c, andmin of the Weibull law are esti-
mated using the maximum likelihood method.β̂ML, ĉML, and
m̂inML are respectively given by the following equations [2]:

ĉML = lim
k→+∞

ck (4)

with ck = F(ck−1), c0 = 1, and:

F(x) =

N
N
∑

i=1
ỹi

x

N
N
∑

i=1
(ỹi

xln(ỹi))−
N
∑

i=1
ln(ỹi)

N
∑

k=1
ỹk

x
(5)

β̂ML =

(
1
N

N

∑
i=1

ỹi
ĉML

) 1
ĉML

(6)

m̂inML = ymin−1 (7)

N denotes the number of pixels,yi the value of pixeli, ymin

the minimum of all theyi andỹi = yi − m̂inML. The term−1
in the m̂inML estimation comes from the non-nullity of the
probability to have the minimum value.

2.3 Choice of the model

Fig. 2 represents the Rayleigh and Weibull distributions esti-
mated by a maximum likelihood estimator on gray levels dis-
tribution of SAS data. Graphically, the Weibull probability
density function seems to be a better model of the amplitude
than the Rayleigh probability density function. A distance
criterion enhances this idea. The Kolmogorov distance (dK)
is displayed for Rayleigh and Weibull models. This criterion
is defined as follows:

dK = sup
x
|F∗

N(x)−F(x)| (8)

where F(x) represents the theoretical cumulative distribu-
tion function andF∗

N(x) the empirical cumulative distribution
function.

The Kolmogorov distance is bigger with the Rayleigh
model than with the Weibull one. This leads to the conclu-
sion the description of the speckle by a Weibull law is better.
More complex models have been proposed in the literature
(K distribution for example [8]), but the Weibull model is a
good trade-off between performance of description and com-
plexity of estimation. Later on, the Weibull distribution is the
only law taken into account to obtain a statistical model.
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Figure 2: Description of the amplitude by Rayleigh (dK =
0.064) and Weibull (dK = 0.027) distributions (N=5600).

Table 1 displays the Weibull law parameters estimated on
two distinct regions of the SAS image assumed to contain no
object. Note that the scale parameterβ is twice as high at
the bottom of the image as at the top. Therefore, a global
model cannot be performed. But, note that the efficiency of
the model is approximatively the same for the two regions
(dK).

min β c dK
top 1.95 413.7 1.95 0.032

bottom 6.31 784.7 1.80 0.039

Table 1: Description of the amplitude with a Weibull proba-
bility density function in distinct parts of the SAS data.

3. THE STATISTICAL HYPOTHESIS TEST

3.1 Hypothesis test

A statistical hypothesis test is based on statistical data allow-
ing to decide between two hypothesis: the null hypothesis
denotedH0 and the alternate hypothesis denotedH1 [9]. The
test is defined as follows:

{
H0 : ∀k∈ {1, . . . ,n} F(xk) = F∗

n (xk)

H1 : ∃k∈ {1, . . . ,n} F(xk) 6= F∗

n (xk)
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where{x1, ...,xn} representsn independent samples of a ran-
dom variableX, F(x) is the theoretical cumulative distrib-
ution function, andF∗

n (x) denotes the empirical cumulative
distribution function.

Our problem is to determine whether there is a mine in
the SAS data or not. Then it seems to be quite logical to
work with the cumulative repartition function of the signal
“mines”. However, it is impossible to have an accurate model
of the signal “mines” because of the few number of pixels
corresponding to mines echoes. Consequently,F(x) is the
theoretical cumulative distribution function of the signal “sea
bed” we can model with a Weibull probability density func-
tion. H1 is then the default hypothesis and a criterion will be
used to estimate the distance with the hypothesisH0.

3.2 Principle

The detection method presented in this article is based on a
segmentation of the echoes. The first step of this method con-
sists in estimating the Weibull parameters in a sliding square
window using the equations 4, 6, and 7. The theoretical cu-
mulative repartition function is then assumed to be locally
known. A distance criterion is then used to determine if the
model with a Weibull probability density function is accept-
able or not.

The criterion we have decided to choose is the Kol-
mogorov distance (equation 8) thanks to its simplicity and
its properties. Indeed, the Kolmogorov distance is indepen-
dent from the estimated statistical model, and then from the
characteristics of the sea bed, if the hypothesis “sea bed” is
true. The non-stationarity of the sonar image highlighted in
section 2.3 is then not a problem in this test: the Kolmogorov
distance has the same behavior when a Weibull law is an ac-
curate statistical model of the current region.
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Figure 3: Result after the statistical hypothesis test.

3.3 Post-processing

As we can see on Fig. 3, the detection of an object is quite
large. Indeed, objects are detected as long as there is at least

one pixel relevant of a mine in the square window. Ifl rep-
resents the width of the window (n= l 2) and m the width
of an echo, this object will be detected with a rectangular of
l + m−1 pixels width. Therefore, a post-processing step is
necessary to rebuild the mine dimension. We propose to per-
form a morphological operator: an erosion. The operator is a
squarel ×m, equal to the previous computation window.
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Figure 4: Result after erosion.

Some experiments have been performed to explain the
choice of the size of the computation window:

• If the size of the window is too small (11× 11 for ex-
ample), there is not samples enough to have an accurate
model of the speckle noise. The Weibull law parameters
are then not estimated successfully. Therefore, the statis-
tical hypothesis test is meaningless.

• If the size of the window is too large (31× 31 for exam-
ple), the number of pixels corresponding to mine echoes
are not large enough to be significant. The statistical hy-
pothesis test does not allow an accurate detection of the
echoes.

Finally, a square window of 21× 21 size seems to be a good
trade-off between these two cases.

3.4 Validation of the method: comparison with a thresh-
old in gray levels

Finally, a threshold on the Fig. 4 allows the detection of
mines in SAS data. On Fig. 5, the results obtained with
our segmentation method and with a simple threshold for the
same false alarm probability (defined in section 4) are plotted
(pf a = 2.10−3). The method presented is suitable: all the ob-
jects are detected and false alarms are not isolated, contrary
to a simple threshold. Indeed, the number of 8-connected ob-
jects (nco) is almost five times as high for the simple thresh-
old as for the hypothesis test.

Results obtained with our segmentation method (Fig.
5(a)) are extremely promising. Indeed, some objects were
badly visible on Fig. 1 (SAS image) and appear clearly on
the resulting image. For example, the buried mine ’e’ on Fig.
1 is better identified with our algorithm than with a simple
threshold.
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4. EVALUATION OF THE PERFORMANCES

4.1 Definition

To highlight the relevance of this segmentation method, it
is tested on several SAS data and compared with a simple
threshold performed on the gray levels of the original image.
Receiver Operating Characteristic (ROC) curves are com-
puted to make the comparison, plotting the evolution of the
detection probability (pd) versus the false alarm probability
(pf a) when the threshold value increases. IfA is the image
containing the regions selected as echoes by the threshold
process (Fig. 6(b)) andB the segmented region with our al-
gorithm (Fig. 6(a)), the detection probability and the false
alarm probability can be defined by:

pd =
NA∩B

NA
(9)

pf a =
NĀ∩B

NĀ
=

NB−NA∩B

NĀ
(10)

whereNX is the number of pixels considered in the regionX.

(a) Hypothesis test
(pd = 0.523,nco = 9)

(b) Threshold in gray levels
(pd = 0.504,nco = 41)

Figure 5: Comparison with a threshold in gray levels (p f a =

2.10−3)

(a) Evaluation ofpd andpf a
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Figure 6: Evaluation of the performances
(A: regions selected on the reference image,

B: regions selected by the proposed algorithm / the threshold)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false alarm probability p
fa

de
te

ct
io

n 
pr

ob
ab

ili
ty

 p
d

 

 

hypothesis test
simple threshold

(a) ROC curves

0 0.005 0.01 0.015 0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

false alarm probability p
fa

de
te

ct
io

n 
pr

ob
ab

ili
ty

 p
d

 

 

hypothesis test
simple threshold

p
fa

 = 2.10−3

(b) zoom in lowpf a

Figure 7: ROC curves: hypothesis test / threshold

4.2 Results

On Fig. 7, we can see ROC curves, one for our segmen-
tation method based on a statistical hypothesis test and one
for a simple threshold on Fig. 1. For very low false alarm
probability (lower than 0.02), our method presented in this
paper is more efficient than a simple threshold on SAS data.
It confirms the results obtained in section 3 forp f a = 2.10−3.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



5. CONCLUSION AND PERSPECTIVES

A detection method in SAS imagery, using statistical hypoth-
esis test, has been proposed in this paper. This method uses
the echoes reflected by the objects and a statistical model of
the sea bed by a Weibull probability density function. An
analysis of the size of the square window has been studied.
The performance of the method can be underlined. Indeed,
contrary to a simple threshold on the SAS data, false alarms
are not isolated and our segmentation method leads to a better
detection of buried objects which echoes have a low signal to
noise ratio.

An idea to improve this method would be the use of a
more complex and appropriate probability density function.
For example, we may obtain a better model of the speckle
noise with a K distribution than with a Weibull probability
density function. A comparison with the use of a Rayleigh
assumption can also be performed. The perspectives of
this work include the recognition and classification of the
detected objects.

Note: This work was supported by the Groupe d’Etudes
Sous-Marines de l’Atlantique (DGA/DET/GESMA, France)
under Grant 01-59-918.
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