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ABSTRACT
Recent advances in video coding are based on the principles
of distributed source coding to both relax the inherent com-
plexity of classical encoding algorithms and offer robustness
against transmission errors. Several practical frameworks
for distributed source coding take advantage of channel cod-
ing principles to encode a suitably pre-quantized version of
the source. In this paper, we present an alternative two-step
approach for the problem of coding a source which is cor-
related with another one that is available only at the de-
coder. First, based on the correlation of the side informa-
tion, a continuous-valued syndrome is computed. Then, ac-
cording to the given rate-constraint, the syndrome is encoded
and transmitted as in classical source coding. The great flex-
ibility of the coding system is confirmed by the simulation
results: for source coding of i.i.d. Gaussian sources, the per-
formance is always within 4 dB from the Wyner-Ziv bound,
for a wide range of side information correlations and target
bit-rates.

1. INTRODUCTION

The video coding architectures have been driven predomi-
nantly by the “downlink” transmission model of TV broad-
cast. Consequently, in a traditional digital video encoding-
decoding scheme, there is a computationally heavy encoder
and a relatively light decoder. The high computational power
required by the encoder is due to the fact that the best cod-
ing parameters must be found by exploiting the temporal and
spatial correlation of the frames in the video sequence in an
optimal manner, and it is dominated by the complexity of the
motion compensated prediction task.

Nowadays, we are instead assisting to the emergence
of applications which require an “uplink” transmission of
digital video, such as for example video-phone calling and
surveillance with low-power video-sensors. In this frame-
work, we need low-complexity encoding algorithms (e.g. to
prolong battery life), with high compression efficiency (due
to the strict bandwith constraints) and robustness to channel
losses.

A promising approach to simultaneously address these
requirements is offered by distributed source coding. In this
framework, several correlated sources are encoded indepen-
dently but jointly decoded. In some case, it was shown that
for a given distortion the rate needed by the “blind” encoders
equals the rate that would be needed when using encoders
that have perfect knowledge about the correlated sources.
When thinking at the frames of a video sequence as the cor-
related sources, it should hence be possible to code them in-
dependently (i.e. without motion compensation) as still im-
ages while obtaining the same performance. Such principles

are exploited in the PRISM coder [1], which is able to of-
fer high compression ratios by transferring the heavy motion
compensation task from the encoder to the decoder.

At the core of this video application, there is the problem
of coding a random source (e.g. the current frame) which
is correlated with another source (e.g. the previous frame)
being known at the decoder but not at the encoder, on which
is the focus of this work.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the current syndrome-based solutions to
the source coding problem with side information. In Section
3, we present our proposed solution, which is based on the
extension of the concept of syndrome to the continuous Eu-
clidean space. We show the theoretical asymptotic optimality
of this coding scheme in Section 4. The results of the exper-
iments, with several numerical results in the Gaussian case,
are presented in Section 5. Section 6 gives the final remarks
on this work and concludes the paper.

2. DISTRIBUTED SOURCE CODING USING
SYNDROMES

Consider the case where X and Y are two correlated and sta-
tionary memoryless sources, and we have to compress X ,
with Y (referred to as side information) being known at the
decoder but not at the encoder (however, both the encoder
and the decoder are assumed to have a perfect knowledge on
the joint distribution of X and Y ). If Y was known at both
ends, then the encoder could exploit all the correlation be-
tween the two sources. Hence, the optimal solution would
be represented by encoding the residual after prediction of
X from Y only. In this case, the achievable distortion-rate
function is the distortion-rate function RX |Y (D) of the ran-
dom variable X |Y [2].

If Y is known only at the decoder, then Wyner and Ziv
have shown that the achievable distortion-rate function, de-
noted as RWZ

X |Y (D), equals RX |Y (D) only in particular cases,

while in general RWZ
X |Y (D) ≥ RX |Y (D) [3]. Namely, the strict

equality holds in the case of X and Y being jointly Gaussian
[3], or in the case of X and Y being discrete, but with D = 0
[4]. Hence, at least in some cases, the limit RX |Y (D) is the-
oretically achievable. However, practical schemes towards
this objective have only recently appeared.

As example, the DISCUS (Distributed Source Coding
Using Syndromes) system [5] takes successfully advantage of
channel coding principles to solve the source coding problem
with side information at the decoder. In this approach, Y is
seen as the “noisy” version of X produced by a virtual “corre-
lation channel”. Then, provided that an n-dimensional block
of input data X is a codeword of some block code which is
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Figure 1: Wyner-Ziv encoder and decoder in the case of a
discrete-valued syndrome (DISCUS system).

good for channel coding, a “channel decoder” can recover
the correct value of X with an arbitrary small probability of
error. To make X appear like a codeword, two operations
are needed at the encoder. As shown in Fig. 1, the first one
is a “lossy” quantization (scalar quantization, SQ, or trellis
coded quantization, TCQ [6]), which outputs a block of data
W which can be put into one-to-one correspondence with the
vectors in a subset of Z

n. After partitioning the space Z
n into

a linear code C0 and its cosets Ci, i = 1,2, . . . ,N −1 (or into
a generalized coset code, like for example the trellis code in-
duced by TCQ, and its label translates [7]), the second oper-
ation “losslessly” codes the index i such that W ∈ Ci, which
in the channel coding lingo is known as the syndrome of W
w.r.t. the code C0. The code and the number of cosets N can
be potentially chosen in a way such that the necessary rate to
code i equals RWZ

W |Y (0) and W can be reconstructed with an
arbitrary small probability of error from Y.

At the decoder, after “channel decoding” of an n-
dimensional block Y using the code Ci (note that for channel
coding purposes each coset Ci is equivalent to the code C0),
we obtain an almost exact approximation W̃ of W. Optimal
linear MSE (mean square error) estimation leads then to the
recovering of X using both Y and W̃≈W = X−Q, where
the quantization noise Q is assumed independent of X.

3. CONTINUOUS-VALUED SYNDROMES

The great interplay between the quantizer and the syndrome
former of Fig. 1 governs the final performance in terms of
MSE, and makes somewhat difficult the ad-hoc design of
the DISCUS system for specific “correlation channels” and
transmission rates. For this reason, we propose an alternative
approach which in a certain way swaps the two operations at
the encoder and eventually offers simplified design rules.

As shown in Fig. 2, the first operation in the proposed
encoder is the syndrome formation. In particular, we con-
sider a trellis coded quantizer Q2[·] based on the geometri-
cally uniform partition aZ/4aZ, and the corresponding un-
bounded trellis code C . The n-dimensional Voronoi cells of
C are all similar each other and have the same volume V2;
hence they have the same second moment per dimension σ 2

2 ,

the same normalized volume Vn2 , V 2/n
2 and the same nor-

malized second moment G2 , σ 2
2 /Vn2 [8]. Since it is known

that, with a sufficiently high number of states in TCQ, G2
becomes asymptotically very close to the normalized second
moment of the sphere, it is reasonable to assume that the
Voronoi cells of C become almost spheric (hence invariant
under rotation). Consequently, the translates CS , C + S
of the trellis code, for S belonging to the basic Voronoi cell

Decoding
"Channel"MSE

Estimation

Syndrome
Formation

ENCODER

Source
Coding

Decoding
Source

DECODER

PSfrag replacements
X

Y

W

S C

X̃ W̃ S̃

Figure 2: Wyner-Ziv encoder and decoder in the case of a
continuous-valued syndrome.

of C , asymptotically form a partition of R
n. The value of S

such that X ∈ CS, which simply satisfies

S = X−Q2[X] , (1)

is hence what we call a continuous-valued syndrome. In the
case of Y = X + N with X ∼ N (0,σ 2

x ), N ∼ N (0,σ 2
n ) and

N ⊥ X , we choose a in a way such that σ 2
2 is proportional to

σ 2
X |Y = (1/σ 2

x +1/σ 2
n )−1, i.e. we set

Vn2 = K
σ 2

X |Y

G2
, (2)

where K is a proportionality volumetric factor and G2 is set
as the experimentally measured value of the normalized sec-
ond moment relative to the used TCQ (which confirms the
results in [6]).

The reason for this choice comes from the fact that the
theoretical rate-distortion function in this setup equals [3]

DWZ
X |Y (R) = DX |Y (R) = σ 2

X |Y 2−2R . (3)

As we will show later, the distortion on the reconstructed
source equals essentially the distortion that we commit on
the syndrome. Hence, for a fixed rate, it is reasonable for the
variance of the syndrome to be proportional to σ 2

X |Y as in (2).

The syndrome S is then coded and decoded into S̃ as in
traditional source coding, according to the desired transmis-
sion rate. In particular, we again use a (dithered) trellis coded
quantizer Q1[·], obtaining

S̃ = Q1[S+Z]−Z , (4)

where Z ∼ N (0,σ 2
z ), Z ⊥ S, is the dither, known at the

decoder. Denote with V1, σ 2
1 , Vn1 and G1 respectively the

volume, the second moment, the normalized volume and the
normalized second moment of Q1[·]. To satisfy the rate con-
straint R (in bit/sample), the volume ratio V2/V1 must equal
2nR, and hence we set

Vn1 = Vn2 ·2
−2R ; (5)

to guarantee that the quantization noise Q = S− S̃ is inde-
pendent of S, we set σ 2

z = σ 2
1 .

At the decoder, a “channel decoder” then obtains an es-
timate of X from Y belonging to C

S̃
. In the previously de-

scribed setup, where N is Gaussian, the best MAP (maximum
a posteriori probability) decoder is based on the minimum
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distance, and hence the “channel decoding” of Y is done
through

W̃ = Q2[Y− S̃]+ S̃ . (6)

Then, assuming that with high probability W̃ ≈ X−Q,
where Q ∼ N (0,σ 2

1 ), and Q ⊥ X ,N, optimum linear MSE
estimation reconstructs X through

X̃ = a1Y+a2W̃ , (7)

where the optimum coefficients equal

a1 =
1

1+ σ2
n

σ2
x

+ σ2
n

σ2
1

a2 =
1

1+
σ2

1
σ2

x
+

σ2
1

σ2
n

. (8)

4. THEORETICAL OPTIMALITY

Let the side information be Y = X +N with X and N Gaussian
as in the previous section. Hence [3]

RWZ
X |Y (D) =

1
2

log2

σ 2
X |Y

D
0 < D ≤ σ 2

X |Y . (9)

If the quantizer of the DISCUS system was a lattice quantizer
based on an unbounded lattice L1 and the code C0 was equal
to a lattice L2 ⊆ L1 (without considering the mapping on
Z

n), then the asymptotic optimality of the system would be
guaranteed, at least for σ 2

n ¿ σ 2
x , as shown in [9].

However, with similar arguments, it is possible to prove
the same result even in the presented case of continuous-
valued syndromes, where in general there is not any in-
clusion relation between the reconstruction points of the n-
dimensional vector quantizers Q1[·] and Q2[·]. In particular,
assume that in correspondence of a target distortion D the
following properties are satisfied (with ε > 0) for a sufficient
large n:
1. the reconstruction points of the vector quantizer Qi[·],

i = 1,2, form a geometrically uniform set [7] whose vol-
ume, second moment, normalized volume and normal-
ized second moment are respectively Vi, σ 2

i , Vni and Gi;
2. the normalized second moments satisfy log2(2πeGi) < ε

(and obviously Gi > 1/2πe [8]), i = 1,2, (i.e. both quan-
tizers have sphere-like Voronoi cells);

3. the second moment of Q1[·] satisfies σ 2
1 = (1/D +

1/σ 2
X |Y )−1 (i.e. σ 2

1 ≈ D for D ¿ σ 2
X |Y );

4. the second moment of Q2[·] satisfies σ 2
2 ≤ σ 2

n +σ 2
1 + ε;

5. the quantizer Q2[·] is such that P[Q2[c+N+Z∗] 6= c] <
ε , for each c s.t. Q2[c] = c, where Z∗ ∼ N (0,σ 2

1 ), and
Z∗ ⊥ N.

These assumptions lead to the following. First of all, the rate
of transmission satisfies

R =
1
n

log2
V2

V1
=

1
2

log2
G1σ 2

2

G2σ 2
1

≤
1
2

log2 2πeG1
σ 2

2

σ 2
1

≤

≤
1
2

log2

(

1+
σ 2

n

σ 2
1

+
ε

σ 2
1

)

+
ε
2
≤

≤
1
2

log2
σ 2

n

D

(

D
σ 2

n
+

D

σ 2
1

+
Dε

σ 2
1 σ 2

n

)

+
ε
2
≤

≤
1
2

log2
σ 2

n

D

(

D

σ 2
X |Y

+
D

σ 2
1

+
Dε

σ 2
1 σ 2

n

)

+
ε
2

=

=
1
2

log2
σ 2

n

D
+O(ε) , (10)

and hence goes to RWZ
X |Y (D) as ε → 0 if σ 2

n ¿ σ 2
x . Then, with

probability higher than 1− ε ,

W̃ = Q2[(X+N)− (S−Q)]+(S−Q) =

= (X−S)+(S−Q) = X−Q , (11)

where Q resembles asymptotically a Gaussian process with
variance σ 2

1 , uncorrelated with X and N (and it is reasonable
to have a dither Z ∼N (0,σ 2

1 ) in quantizing S) [10]. Finally,
with the coefficients of (8), it is easy to show that with the
same probability

σ 2
e =

1
n

E[‖X̃−X‖2] =
1

1
σ2

1
+ 1

σ2
X |Y

= D , (12)

and hence the Wyner-Ziv bound is reached as ε → 0.
While properties 1, 2, and 3 are easily fulfilled by TCQ

with sufficiently high n and number of states, properties 4
and 5 seem to be hard to be jointly satisfied. However, if
Q2[·] is asymptotically an optimal lattice quantizer, then the
quantization noise resembles a Gaussian with variance σ 2

2
[10]. Hence, choosing σ 2

2 ≥ σ 2
n + σ 2

1 , it is reasonable that
property 5 holds while guaranteeing property 4.

5. EXPERIMENTAL RESULTS

The aim of the following preliminary experiments is to show
both the flexibility and the optimality of the system proposed
in Section 3. In all the experiments, the results refer to the
Gaussian case previously analyzed, where Y = X + N. The
Correlation-SNR (or C-SNR) is measured as the ratio σ 2

x /σ 2
n

and the data are averaged over 100 sequences whose length
is n = 104.

First of all, we are interested to the right choice for the
factor K to be used in (2). The solution is not straightforward.
In fact, high values of K guarantee that W̃≈X−Q, but they
imply very high values of σ 2

1 , which is the variance of Q. In
the opposite case, a low K value leads to a low variance of Q,
but the probability that W̃ 6= X−Q greatly increases.

Fig. 3 shows the performance of the system as a function
of the C-SNR for various K. Both Q1[·] and Q2[·] are 8-state
trellis coded quantizers. As expected, there is an optimum
value of K. As example, a value K = 2.2 improves the per-
formance w.r.t. to the case K = 1.8, but further increasing
of K again leads to a poorer performance. When analyzing
the performance of the system as a function of the rate, it can
be however noted that higher values of K improve the system
performance at medium bit-rates, as shown in Fig. 4. This ef-
fect is particularly evident when the C-SNR is low, as shown
in Fig. 5.

When the best value is chosen for K, the experimental
probability of W̃ being different from X−Q is about 10−3,
as obtained in the DISCUS system when it achieves the best
performance w.r.t. the theoretical bound. However, in the
DISCUS system the best performance is obtained for specific
rates and correlations only, while in our scheme the measured
performance becomes then about 4 dB (or equivalently 2/3
of bit) far from the Wyner-Ziv bound, for any correlation and
any rate.
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Figure 3: Average distortion at R = 2 bit/sample (with 8-state
TCQ), for various values of the volumetric factor K.
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Figure 4: Average distortion at Correlation-SNR = 19.0 dB
(with 8-state TCQ), for various values of the volumetric fac-
tor K.
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Figure 5: Average distortion at Correlation-SNR = 9.0 dB
(with 8-state TCQ), for various values of the volumetric fac-
tor K.
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Figure 6: Average distortion at R = 2 bit/sample (with K =
2).
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Figure 7: Average distortion at Correlation-SNR = 13.4 dB
(with K = 2).

In the previous experiments, 8-state TCQ was used with
the goal to maintain a very low computational complexity.
However, the performance of such TCQ in terms of normal-
ized second moment is quite far from the spheric-Voronoi
cell limit (about 0.5 dB). Hence, we expect that further im-
provements can be achieved by increasing the number of
states. As example, if both Q1[·] and Q2[·] are 64-state trellis
coded quantizers, the performance already increases of about
1 dB w.r.t. the 8-state case. In particular, that improvement is
more visible in the low correlation region, for a fixed value
of the rate (as in Fig. 6), and in the high bit-rate region, for
a fixed C-SNR (as in Fig. 7). It is worth noting that these re-
sults are obtained with a suboptimal value of K; it is however
very probable that we reach similar results even with a more
careful choice of K.

In designing the system, we simply use (5) to set the nor-
malized volume of the finer quantizer Q1[·] as a function of
the target rate R. To show that, after syndrome quantization,
the necessary rate is actually almost equal to the target R, in
Fig. 8 we show the experimental first order entropy of the
bit-stream output by TCQ. To compute this value, the exper-
imental entropies of the coded and of the uncoded bits are
summed together, and hence they are assumed to be inde-
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Figure 8: Estimated first-order entropy of the binary code-
word C sent to the decoder.

pendent. At a first glance, it can be noted that at low bit-rates
the entropy is actually greater than the target bit-rate R, but
that at medium and high bit-rates essentially the two quanti-
ties are the same.

This phenomenon is explained by two reasons. First, at
low bit-rates there are more side effects caused by the inde-
pendent shapes of the Voronoi cells of the two quantizers,
that lead to a final number of cells used to quantize the syn-
drome greater than the expected value V2/V1. Then, it is very
likely that at low bit-rates the coded and the uncoded bits
are not independent and hence that the measured entropy is
overestimated. Consequently, it is likely that, as example,
an ad-hoc context-based arithmetic coder leads to an average
bit-rate which is eventually less than the estimated entropy,
because it can better exploit the joint and temporal correla-
tion of the coded and the uncoded bits.

6. CONCLUSION

In this paper, we presented a novel practical coding scheme
for the source coding problem with side information at the
decoder. The encoder consist of two cascaded blocks. The
first one is a syndrome extractor and the second one is a clas-
sical source encoder.

In the first block, a continuous-valued syndrome is
formed according to the known correlation between the vari-
able to be coded X and the side information Y . We use TCQ
based on the partition aZ/4aZ to form this syndrome, and
hence the complexity of the operation linearly increases with
the number of samples and the number of states. Moreover,
since the syndrome formation is simply driven by the value
of a, it is straightforward to adapt the system to a changing
X-Y correlation.

The second block allows for coding of the syndrome with
the desired transmission rate R, that can be easily adapted
to the changing transmission channel conditions. We again
employ TCQ, but any classical source encoder can be used.
Furthermore, there is the possibility to code the same syn-
drome at different rates, using embedded quantizers. Hence,
the scheme is very suitable for quality scalable transmission.

The decoder consists of a “virtual” channel decoder and
of a linear estimator (without considering the source decoder

for the coded syndrome). The channel decoder is based on
TCQ and hence its complexity equals the complexity of the
syndrome extractor of the encoder. Both the channel decoder,
driven by a, and the linear estimator, driven by the coeffi-
cients a1 and a2, can be easily adapted to the changing X-Y
correlation.

The performance of the proposed coding system is shown
for the jointly Gaussian case, using a wide range of transmis-
sion rates and correlations. In any case, the reconstruction er-
ror is within 4 dB from the theoretical bound, showing the in-
creased flexibility w.r.t. the discrete-valued syndrome based
system (DISCUS) [5]. Even if the DISCUS system can reach
a performance as near to the Wyner-Ziv bound as 2.1 dB at
rate 1 bit/sample or 3.2 dB at 2 bit/sample, that result holds
only for a specific correlation. Moreover, this system is con-
strained to use integer bit-rates, and changing the rate implies
to redesign the system.

As a final remark, while in DISCUS the encoder is tai-
lored to the Gaussian distribution of X , in the proposed sys-
tem the encoder is only based on the X-Y correlation, and it is
likely to work even in the case of a general distribution. Con-
sequently, its straightforward application to the distributed
video coding framework seems to be very promising.
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