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ABSTRACT

An effective method is proposed in this paper for the
estimation problem of unknown time-delay of a signal
which is received corrupted by the nonstationary ran-
dom noise. The keys of the method are the stationar-
ization of the nonstationary observation data and the in-
troduction of Wigner distribution-based maximum like-
lihood function. The method is tested by simulations to
show the efficacy.

1. INTRODUCTION

Recently, there has been an increasing interest in the es-
timation of time-delay of signals which are transmitted
to a target and received with corrupting nonstationary
random noise. It is needless to say that the need for
determining the time-delay arises in sensor array sys-
tems. The problem of time-delay estimation for targets
reduces to that of estimating the parameter associated
with the received signal. The authors have been concen-
trating their attention to the problems of detecting sig-
nals and/or estimating time-delay as the parameter esti-
mation, and they have developed an approach based on
the maximum likelihood function which is constructed
from the time-frequency realizations of Wigner distribu-
tion (WD) [1-4]. Although the approach has been shown
to achieve good results at low SNRs, there is no guaran-
tee for the case of nonstationary random noise because
the approach was developed under the assumption that
the corrupting noise is stationary.

Time-delay estimation is one of important issues
in signal processing. Most of conventional methods
have been developed by assuming the corrupting noise
is stationary with time-invariant power spectrum (e.g.,
[5]). As well-known, there exist several tools for ana-
lyzing signals in time-frequency domain such as short-
time Fourier transform, wavelet and Wigner distribu-
tion. However, these may be effective for signal detec-
tion, but the usefulness for estimating parameters at-
tributed to the signal to be detected is still uncertain be-
cause these do not use positively any information about
the corrupting nonstationary random noise.
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In this paper, a method of estimating time-delay of
the signal which is corrupted by a nonstationary ran-
dom noise is proposed. The principal line of attack of
the approach is to convert the nonstationary observa-
tion process to a stationary one, and then to apply the
WD-based parameter estimation method developed by
the authors to the signal detection.

2. PROBLEM STATEMENT

Let s(t) be a scalar (real) signal transmitted actively to
a target or emanated from a remote source. When the
signal is received at a receiver, it is delayed in time, at-
tenuated, and contaminated by random noise. Then the
observation data is obtained in the following manner:

y(t) = as(t − D) + n(t), t ≥ 0 (1)

where a and D are the attenuation coefficient and time-
delay, respectively; and n(t) is the additive random
noise. The form of signal s(t) is assumed to be known,
but its duration is local in time. The additive noise n(t)
is assumed to be nonstationary and given as an output
of the process described by the Itô stochastic differential
equations:

dn(t) = −β(t)n(t)dt + α(t)dw(t), n(0) = n0, (2)

where w(t) is a (scalar) standard Wiener process; α(t),
β(t) are slowly and smoothly varying positive but un-
known functions; and the initial value n0 is a Gaus-
sian random variable with zero-mean and unit variance.
Since (unknown) parameters α(t) and β(t) are time-
varying, the noise n(t) and also the observation process
y(t) become inevitavely nonstationary.

Then, our purpose is to propose a method of esti-
mating the time-delay D from the nonstationary obser-
vation data {y(t)}. It should be emphasized here that
the existing approaches can not be applied directly with-
out any modification for such estimation problem of the
time-delay because the additive noise n(t) is nonstation-
ary. Most of all existing approaches are developed for
stationary noise processes. From this standpoint, the
approach taken in this paper is as follows:

(i) First, the unknown coefficient functions α(t) and
β(t) in the noise model (2) are estimated using observa-
tion data {y(t)}.

(ii) Then, using the estimates for α(t) and β(t), the
nonstationary observation data {y(t)} are modified to



be stationary ones. Similar procedure has recently at-
tempted to the detection problem of signals corrupted
by nonstationary noise [6].

(iii) Based on the stationarized observation data in
the procedure (ii), the estimation of D is achieved via
the WD-based maximum likelihood estimation method
developed by the authors [1-4].

Since the attenuation parameter a is linearly related
to the signal, the procedure of its estimation will be
decoupled [7]. So, for simplicity, it is assumed in the
sequel that a is known.

3. STATIONARIZATION OF NONSTATION-

ARY OBSERVATION DATA

A. Estimation of Unknown Coefficients
First, the unknown coefficient functions of time, α(t)

and β(t), in the noise model (2) are identified. To do
this, recalling that the duration of the signal to be de-
tected is very local, let us consider the signal-free case,
neglecting the signal’s existence,

y(t) = n(t), (3)

which has the stochastic differential [8,9],

dy(t) = dn(t)

= − β(t)y(t)dt + α(t)dw(t). (4)

We have assumed that the coefficient functions α(t)
and β(t) change slowly and smoothly. More concretely
speaking, in an interval It around the current time t,
they are assumed to behave approximately like constant,
i.e.,

α(t) = αt, β(t) = βt for t ∈ It. (5)

Recalling that the power spectral density of the pro-
cess (2) with constant parameters α0 and β0 is given
by S(λ) = α2

0/(λ2 + β2
0), the power spectral density of

the n(t)-process is approximately evaluated around the
current time as

St(λ) =
αt

2

λ2 + βt
2

(6)

under the local stationarity assumption (5). The suffix
in the notation St(λ) stands for the dependence on the
current time t. In this sense, St(λ) may be interpreted as
the time-varying spectral density or evolutionary spec-
tral density in the sense of Priestley [10].

With the help of Priestley’s method for the estima-
tion of evolutionary (i.e., time-varying) spectral density,
the density St(λ) can be estimated from the observation
data {y(t)} (provided that no signal exists in the data).

Let it denote by Ŝt(λ).
From the relation (6), we have

1

St(λ)
=

(

1

αt
2

)

λ2 +

(

βt
2

αt
2

)

. (7)

Based on this version, the coefficients 1/αt
2 and

βt
2/αt

2 are determined by minimizing the square-error,

|1/St(λ) − 1/Ŝt(λ)|2 with respect to these coefficients.

However, only the first one is accepted as a least-squares

estimate to obtain α̂t =
√

α̂2
t because the estimate for

βt obtained by this can not be recommended from the
viewpoint of accuracy. Instead, this is estimated from
the standpoint of energy of the noise process. It is cal-
culated in the neighborhood of t as

v(t) =

∫ ∞

−∞

St(λ)dλ =
αt

2

βt

π. (8)

From this, we have the estimate β̂t by

β̂t =
α̂2

t

v̂t

π, (9)

where v̂t =
∫ ∞

−∞
Ŝt(λ) dλ.

B. Stationarization of the Observation Data
By assuming still the signal-free case, the observa-

tion process (4) can be approximated locally using the
estimated coefficients,

dy(t) = −β̂t y(t)dt + α̂t dw(t). (10)

This is expressed in the discretized version as follows:

δyt = −β̂t yt δt + α̂t δwt , (11)

where δyt (= y(t + δt) − y(t) + o(δt)) and δwt (= w(t +
δt)−w(t)+o(δt)) are small increments of y(t) and w(t),
respectively. Dividing both sides by α̂t δt provided that
α̂t 6= 0, we have

δyt + β̂t yt δt

α̂t δt
=

δwt

δt
. (12)

Here, it should be noted that the right-hand side of (12)
can be regarded as a stationary white Gaussian noise
sequence with zero-mean and unit power spectral den-
sity. Keeping this fact in mind, let us define for each t
a sequence ŷt by

ŷt =
δyt + β̂t yt δt

α̂t δt
. (13)

Hence, the sequence ŷt can be regarded as a (discrete-
time) stationarized version (for signal-free case) of the
observation process y(t).

Same argument can be possible for the case when
the signal exists. Indeed, the observation process (1) is
expressed in the stochastic differential form, using the
estimated coefficients, as

dy(t) = aṡ(t − D)dt + dn(t)

= [ aṡ(t − D) − β̂t n(t) ]dt + α̂t dw(t)

= a{ṡ(t − D) + β̂t s(t − D)}dt

−β̂t y(t)dt + α̂t dw(t). (14)



From this we have the discretized version,

δyt + β̂t yt δt = a{ṡ(t − D) + β̂t s(t − D)} δt

+ α̂t δwt . (15)

Dividing both sides again by α̂tδt, we have the expres-
sion,

ŷt = aŝt(D) + γt, (16)

where

ŝt(D) =
1

α̂t

{ṡ(t − D) + β̂t s(t − D)} (17)

and γt = δwt/δt is the white Gaussian noise sequence.
The expression (16) is familiar to us as the mathemat-
ical model for the detection problem of signals in the
stationary random noise [11].

4. WIGNER DISTRIBUTION-BASED

ESTIMATION OF TIME-DELAY

The signal detection will be possible if it is done based
on (16). Of course, there are so many approaches such
as the binary test based on likelihood-ratio, WD for the
observation data, and so on. The estimation of the time-
delay D is achieved here by incorporating the WD with
the idea of the maximum likelihood function. Hereafter,
write ŷt as ŷn for t = n∆t (∆t: small increment of the
time partition). Then, given the observation data {ŷt},
or {ŷn}n=0,1,2,··· generated by the discrete-time process
(16), let Wŷ(n, k; D) be the discrete WD represented in
the following form [12]:

Wŷ(n, k; D) =

N−1
∑

m=0

ŷn+m ŷn−m cos (4πmk/N). (18)

Equation (18) can be expressed as the sum

Wŷ(n, k; D) = Wŝŝ(n, k; D) + 2Wŝγ(n, k; D)

+ Wγγ(n, k), (19)

where

Wαβ(n, k; D) =

N−1
∑

m=0

αn+m βn−m cos (4πmk/N)

(α, β = ŝ or γ). (20)

It should be noted that in (19) there appear two terms
due to the random noise, 2Wŝγ(n, k; D) and Wγγ(n, k),
and that these two interfere in the legitimate auto-
component Wŝŝ(n, k; D) to detect the signal by observ-
ing the spectrum of Wŷ(n, k; D) over the time-frequency
domain. This situation leads us to formulate the binary
test:

H1: Wŷ(n, k; D) described by (19)

H0: Wŷ(n, k; D) = Wγγ(n, k).

}

(21)

In order to perform the hypothesis-testing (21), consider
the probability density function for Wŷ(n, k; D).

For fixed D, Wŷ(n, k; ·) computed by (18) is a realiza-
tion on the grid (n, k), so that the set W = {Wŷ(n, k; ·)}
constitutes a random field over time-frequency domain.

Assuming 1 ≤ n ≤ N and 1 ≤ k ≤ M , let w be the
MN -dimensional vector consisting of realizations {Wŷ}
arranged in lexicographic order. Recall that the value of
WD Wŷ can be treated asymptotically as the Gaussian
random field [3]. Then, the likelihood function p{w|D}
can be written as the joint probability density function
of w:

p{w|D} = (2π)−
MN

2 |R(D)|−
1

2

· exp

{

−
1

2
[w − m(D)]T R−1(D)[w − m(D)]

}

, (22)

where m(D) and R(D) are the mean vector and covari-
ance matrix, respectively. Furthermore, let us introduce
another likelihood function p0{w} under the hypothesis
H0 which says equivalently that the observation data
comes from ŷt = γt:

p0{w} = (2π)−
MN

2 |R0|
−

1

2

· exp

{

−
1

2
(w − m0)

T R−1

0
(w − m0)

}

, (23)

where m0 and R0 are the mean and covariance under
H0. The introduction of p0{w} is only for technical rea-
son to derive the following log-likelihood ratio function:

L(w; D) = −
1

2

{

ln |R(D)| − ln |R0|

+ [w − m(D)]T R−1(D)[w − m(D)]

− (w − m0)
T R−1

0 (w − m0)
}

. (24)

The estimation of the unknown parameter D can be
obtained by maximizing this function with respect to D
over its possible region D:

D̂ = arg

{

max
D∈D

L(w; D)

}

. (25)

5. SIMULATION STUDIES

To confirm the proposed method several simulation ex-
periments were performed. The observation data y(t)
is generated by the discretized version for (1) with the
time step size ∆t = 1 sec, the time-varying coefficients
of the nonstationary noise process n(t) are set as

α(t) = 1 − 0.8 cos

(

2π(t − 500)

1024

)

β(t) = 0.5 − 0.45 cos

(

2π(t − 700)

1024

)

,

and a was set as a = 1.



A. Sinusoidal Signal
The transmitted signal s(t) is assumed to have the

one-cycle sinusoidal waveform,

s(t) =

{

0.8 sin
2πt

6
for 0 < t ≤ 6

0 otherwise.
(26)

The top figure in Fig. 1 depicts the observation data
during the time interval [0, 1000] sec. The signal to be
detected is illustrated on the bottom, and this signal is
embedded in the observation process with true param-
eter D∗ = 660 sec. The estimated coefficients α̂t and
β̂t are illustrated in Fig. 2. Comparing them with their
true values, we may say that the estimates are fairly well
performed. The top in Fig. 3 depicts the modified (sta-
tionarized) observation data ŷt. By comparing this with
the original nonstationary process y(t) shown in Fig. 1
it can be said that the sequence ŷt depicted in Fig. 3 is
well stationarized.

The log-likelihood ratio function L(w; D) is shown
also in Fig. 3. It is apparent from this figure that
L(w; D) takes a distinctively large peak around D = 660
sec. From this we may see that the proposed method
has an excellent performance.

B. Pulse Signal
The proposed estimator is also effective to estimate

the pulse signal. We verify this by numerical simula-
tions. The transmitted signal s(t) is assumed to be

s(t) =

{

0.78 0 ≤ t ≤ 11

0 otherwise.
(27)

We set the true parameter as D∗ = 70 sec. The ob-
servation data and the signal to be detected are shown

in Fig. 4. The estimated coefficients α̂t and β̂t are illus-
trated in Fig. 5. Figure 6 shows the modified observation
data ŷt and the result of function L(w; D). We can see
that L(w; D) takes a conspicuous peak around D = 70
sec, clearly.

6. CONCLUSION

It seems that almost all conventional methods for esti-
mating the time-delay of the signal to be detected are
proposed under the assumption of stationary random
noise. On the contrary to such situation, an approach
to the estimation problem of time-delay has been pro-
posed in this paper under the situation of nonstationary
random noise. The usefulness of the approach has been
verified affirmatively by simulation studies.
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Fig. 1. A sample path of the observation data y(t) (top)
and the embedded one-cycle sinusoidal signal s(t) (bottom).
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Fig. 2. Estimations of α(t) (left) and β(t) (right) (where
the dash-dot line indicates their true values).
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Fig. 3. The stationarized observation data ŷt (top) and the
log-likelihood ratio function L(w; D) (bottom).
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Fig. 4. A sample path of the observation data y(t) (top)
and the embedded pulse signal s(t) (bottom).
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Fig. 5. Estimations of α(t) (left) and β(t) (right).
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Fig. 6. The stationarized observation data ŷt (top) and
the log-likelihood ratio function L(w; D) (bottom).

REFERENCES

[1] H. Ijima, A. Ohsumi, H. Sato, and I. Djurović, “Max-
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Estimation of Chirp Signals in Random Noise Us-
ing Wigner Distribution,” in Proc. 47th IEEE Int.
Midwest Symp. on Circuits and Systems (MWSCAS
2004), Hiroshima, Japan, 2004, Vol.II, pp.177-180.

[5] Special Issue on Time Delay Estimation, IEEE
Trans. Acoustics, Speech, and Signal Processing,
vol.ASSP-29, no.3, 1981.

[6] H. Ijima, R. Okui, and A. Ohsumi, “Detection of
Signals in Nonstationary Random Noise via Station-
arization and Stationarity Test,” in IEEE/SP 13th
Workshop on Statistical Signal Processing (SSP ’05),
Bordeaux, France, 2005, Paper ID No.68.

[7] S. Kay, Fundamentals of Statistical Signal Process-
ing: Estimation Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[8] A. H. Jazwinski, Stochastic Processes and Filtering
Theory. New York: Academic Press, 1970.

[9] A. Friedman, Stochastic Differential Equations and
Applications. New York: Academic Press, 1975.

[10] M. B. Priestley, Spectral Analysis and Time Series.
New York: Academic Press, 1981.

[11] H. L. Van Trees, Detection, Estimation, and Modu-
lation Theory, Part I, New York: John Wiley, 1968.

[12] LJ. Stanković and V. Katkovnik, “The Wigner Dis-
tribution of Noisy Signals with Adaptive Time-
Frequency Varying Window,” IEEE Trans. Signal
Processing, vol.47, no.4, 1999, pp.1099-1108.


