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ABSTRACT

This paper addresses the problem of joint detection for a
spread-spectrum multiple-access system based on random
permutations. The transmission channels are assumed to be
frequency-selective and time-varying; moreover, these chan-
nels are unknown to the receiver. Consequently, the detec-
tion is achieved using an adaptive algorithm, whose objec-
tive consists of minimizing the minimum mean-square error.
Alternatively, under the same hypotheses, an adaptive detec-
tor is also proposed for the DS-CDMA system, and com-
pared with the previous detector. This comparison shows
that, even if the detection is difficult in such a context for both
detectors, the permutation-based method gives better perfor-
mance.

1. INTRODUCTION

Spreading techniques are among the prominent multiple-
access schemes for the third-generation mobile cellular sys-
tems. Techniques based and derived from the CDMA par-
adigm are the most popular, and are already used in many
wireless communication systems. Particularly, this success
has given rise to many multi-user detectors, which are rele-
vant in various situations (see for instance [6] and references
therein).
Nevertheless, other multiple-access schemes have equivalent
spreading capabilities. In this paper is investigated a partic-
ular spreading method, called Random Permutation Multiple
Acces (RPMA), which can be regarded as a sub-class of lin-
ear periodic time-varying filters. This method consists of per-
muting the samples of an input data block in order to spread
the spectrum of the data: this operation is a particular case of
discrete periodic clock changes [4].
Other block-spreading techniques can be found in the liter-
ature (e.g., [5], [7]). However, it is important to note that
the method proposed in this paper differs from the Chip-
Interleaved Block-Spread CDMA method developed for in-
stance in [7]: indeed, the interleaver used here is a random
interleaver, whose main property consists of whitening the
part of the received multi-user signal which is not synchro-
nized with the part of signal of interest [4]. At the contrary,
the interleaver used in [7] is a matrix (row-column) inter-
leaver, which does not present the same properties: therefore,
it does not work equally, and generally assumes a synchro-
nous or quasi-synchronous transmission.
In this paper, the case of asynchronous transmissions on
time-varying frequency-selective channels is considered.
Previous works using RPMA have already been proposed on
this topic (e.g. [1], [2]), where it is compared to the well-

known DS-CDMA system. In [2], it has been shown that
RPMA performs better than DS-CDMA for fast fading chan-
nels. However, this previous study assumed perfect knowl-
edge of the channels at the receiver, which is obviously not
realistic, in particular when the channel variations are fast. In
this paper, one assumes a partial knowledge of the channels,
i.e. only the tap delays are known, whereas the fading coeffi-
cients are unknown at the receiver. Therefore, one resorts in
this paper to an adaptive algorithm, and more specifically to
the Least-Mean-Squares (LMS) detector, which adaptively
minimizes the linear Mean Square Error (MSE). Obviously,
the originality of this paper does not hold in the use of the
LMS algorithm, which is a classical adaptive algorithm. In-
stead, the originality relies on the fact that a new spread-
spectrum technique can be used in the context of unknown
time- and frequency-selective channels, and that this method
gives better results than a similar detector derived for a “clas-
sical” spread-spectrum method (here, the DS-CDMA sys-
tem).
Section 2 presents the random permutation technique, and
gives the expressions of the transmitted and received contin-
uous/discrete signals. The detection is investigated in section
3 for the RPMA system; an equivalent detector for the DS-
CDMA system is also presented. Simulation results are pro-
vided in section 4, along with a comparison between RPMA
and DS-CDMA systems.

2. PROBLEM FORMULATION

2.1 The permutation process

Let (bn)n∈Z (bn ∈ {−1;+1}) be a sequence of equiprobable
bits. This sequence is modulated by an antipodal baseband
code with durationT and waveform patternm(t). The mod-
ulated processZ(t), defined byZ(t) , ∑n∈Z bnm(t −nT),
is sampled with periodTs, such thatNs , T/Ts is an in-
teger number (i.e.,Ns is the number of samples per bit).
Let (Zn)n∈Z denote this sampled sequence. A new se-
quence(Un)n∈Z is formed from(Zn)n∈Z as follows: con-
sidering blocks ofNb consecutive bits, theNsNb samples of
(Zn)n∈Z corresponding to a given block are permuted using
an uniformly distributed permutation of the set{1, . . . ,NsNb}
(this permutation is the same for all blocks). The sequence
(Un)n∈Z is defined as the resulting sequence of this block per-
mutation. One can then show that the power spectral density
of (Un)n∈Z is spreaded by a factorNs with respect to the one
of (Zn)n∈Z

1[4]. Consequently, this permutation procedure is

1Actually, the sequenceUn is not stationary in general; however, the
sequenceVn defined byVn , Un+Φ whereΦ is uniformly distributed on the
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Figure 1: Example of permutations for one block, using
biphase signaling,Nb = 4, andNs = 8.

a particular spread-spectrum technique. An example of this
permutation procedure is given in fig. 1, for one block of
Nb = 4 bits andNs = 8 samples.

Denotebr =
[
b(r−1)Nb+1, . . . ,brNb

]T
as therth block of

bits, andm , [m1, . . . ,mNs]
T as the result of the sampling

of the waveform patternm(t) with Ns samples. Then, the
rth block of the sequence(Zn)n∈Z, i.e. the vectorZr =
[Z(r−1)NsNb+1, . . . ,ZrNsNb]

T , can be expressed as:Zr = MTbr ,
whereM = mT ⊗ INb is theNb× (NsNb) matrix defined by

M =

 mT 0 · · ·

0
...

...
· · · mT


(⊗ is the Kronecker product, andIn is the identity matrix
of ordern). Let P denote the(NsNb)× (NsNb) matrix cor-
responding to this permutation (i.e.Pi, j = 1 iff the inte-
ger j is transformed into the integeri by this permutation,
and Pi, j = 0 otherwise). Therth block of the sequence
(Un)n∈Z, defined byUr , [U(r−1)NsNb+1, . . . ,UrNsNb]

T , can be
expressed as

Ur = PZr = PMTbr .

The continuous-time processx(t) obtained from(Un)n∈Z us-
ing a rectangular waveform signaling is then given by

x(t) = ∑
r∈Z

NsNb

∑
j=1

(
PMTbr

)
j ρ (t − jTs− rNbT)

where(v) j denotes thejth component of any vectorv, and
ρ(t) is the indicator function on[0;Ts].

2.2 The multi-user signal

Consider the asynchronous transmission ofK users using the
spread-spectrum technique presented above. Letbr,k, Pk and
xk(t) denote respectively therth block of bits, the permu-
tation matrix, and the continuous-time process correspond-
ing to userk. The channel associated to thekth user is a

set{1, , . . . ,NsNb} is stationary and ergodic, and the autocorrelation function
and power spectral density refer rather to this stationarized sequence.

time-varying frequency-selective channel, whose impulse re-
sponse at timet is given by2:

ck(t,τ) =
L

∑
l=1

ck,l (t)δ
(
τ − τk,l

)
,

whereck,l (t) is the time-varying (complex) gain of thel th
path of thekth user,τk,l is the propagation delay, andδ is the
Dirac function. If each user transmitsB blocks of bits, the
received signal is expressed as:

y(t) = ∑B
r=1 ∑K

k=1 ∑L
l=1 ∑NsNb

j=1 ck,l (t)
(
PkMTbr,k

)
j ×

ρ
(
t − jTs− rNbT − τk,l

)
+n(t)

wheren(t) is an additive white Gaussian noise (AWGN) with
varianceσ2, independent of the transmitted signals.

At the receiver, this continuous signal is sampled by pass-
ing it through an appropriate filter bank. Referring to [2], the
optimal filtering, i.e. which yields to a sufficient statistic, is
defined by∫ ( j+1)Ts+rNbT+τk,l

jTs+rNbT+τk,l

c∗k,l (t)y(t)ρ
(
t − jTs− rNbT − τk,l

)
dt,

(1)
for k= 1, . . . ,K, l = 1, . . . ,L, j = 1, . . . ,NsNb, andr = 1, ...,B.
Now, it is assumed in this paper that the complex gains
ck,l (t) are unknown to the receiver (whereas the delaysτk,l
are known). Consequently, this filtering can not be achieved
in such a context, and one must resort to a sub-optimal filter-
ing. One proposes here to use the filter bank defined in [1],
suited for constant channels, i.e. to define variablesyk,l ,r( j)
as ∫ ( j+1)Ts+rNbT+τk,l

jTs+rNbT+τk,l

y(t)ρ
(
t − jTs− rNbT − τk,l

)
dt,

for k= 1, . . . ,K, l = 1, . . . ,L, j = 1, . . . ,NsNb, andr = 1, ...,B.
For Ts small enough (or equivalently,Ns large enough),Ts is
smaller than the coherence time of the channel, andck,l (t)
can be supposed constant in the integral interval in (1).
Therefore,yk,l ,r( j) is quasi-equal to the integral expression
(1), up to the scalar constantck,l ( jTs+ rNbT +τk,l ), and both
filter banks performs similarly. Define now vectors

yk,l ,r , [yk,l ,r(1), . . . ,yk,l ,r(NsNb)]T ,

yl ,r , [yT
1,l ,r , . . . ,y

T
K,l ,r ]

T ,

yr , [yT
1,r , . . . ,y

T
L,r ]

T

bk,r , [bk,r(1), . . . ,bk,r(Nb)]T ,

br , [bT
1,r , . . . ,b

T
K,r ]

T

Thus, the vectorsyr andbr are the concatenation of all corre-
lations, and of all bits, respectively. IfTs is assumed smaller
than the coherence time, as mentioned above, one can show
thatyr can be written as:

yr = ΛrΠbr +nr (2)

where :
2Actually, the number of paths is generally not equal for all users. How-

ever, one can considerL as the maximum of the path lengths, nulling gains
ck,l (t) if necessary.
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• Λr is the (Hermitian) symmetric matrix whose element
in row (l −1)NsKNb +(k−1)NsNb + j and column(l ′−
1)NsKNb +(k′−1)NsNb + j ′ is∫

ck,l (t)c∗k′,l ′(t)ρ
(
t − jTs− τk,l

)
ρ

(
t − j ′Ts− τk′,l ′

)
dt

• Π = 1L ⊗ Πd, with 1L = [1, . . . ,1]T (with length L),
andΠd is the block-diagonal matrix whosekth diagonal
block is the matrixPkMT .

• nr is a zero-mean Gaussian vector with covariance matrix
σ2Λr .
Note that matricesΛr andΠ can be huge, since they have

dimensions(NsKNbL)× (NsKNbL) and(NsKNbL)× (KNb),
respectively. However, the memory and computationnal
costs can be drammatically reduced given the fact that these
matrices are sparse. For instance, using parameters used for
fig. 2 (see section 4), matrixΛr contains only 8.8% of non-
zero elements (and this percentage decreases when the di-
mension parameters increase). Also, the matrixΠ has only
KNsNbL non-zero elements.
In order to retrieve the users’bits with minimum error rate,
the receiver must severely reduce the multiple-access in-
terference, the inter-symbol interference, and the additive
noise. In previous works ([1], [2]), Linear Minimum MSE
(LMMSE) detectors have been studied, assuming perfect
knowledge of the channels. In this paper, due to the assump-
tion of unknown channel coefficients, one proposes to resort
to the adaptive version of the LMMSE, i.e. the LMS algo-
rithm.
It must also be noted that, ideally, all vectors(yr)r are re-
quired for the detection of one single bit of one single user,
as indicated by the form of the sufficient statistic. This is
due to the inter-symbol interference (for each user) and to
the asynchronism between users. Obviously, this cannot be
done for an adaptive algorithm such as the LMS algorithm,
since the number of coefficients would be far too large. We
propose here to base the on-line detection of the block of bits
br on the use of the unique vector of matched-filter outputs
yr . However, the algorithm can easily be generalized to the
used of a set of vectors of the form(yr ′)r ′∈Θr , whereΘr is a
set of block indexes includingr.

3. LMS DETECTOR

3.1 The RPMA case

For perfectly known channel coefficients, the problem ad-
dressed in [2] consists of detecting all bits of all users by
considering simultaneously all transmitted blocks. Now, it
is assumed in this paper that the channel coefficients are un-
known. One then resorts to an adaptive algorithm, and the
detection is performed block after block, i.e. the objective is
to minimize for each blockr the MSE

f (H) , E
[
‖br −Hyr‖2] (3)

with respect to the(KNb)× (NsKNbL) matrix H (the ma-
trix norm is defined by‖A‖ , (trace

(
AAH

)
)1/2). Thus, one

searches to adaptively derive at each block timer the optimal
matrix, which minimizes this error. Denoteh as the vector
obtained by columnwise reshaping the matrixH in (3). LetR
denote the transformation such thatH = R(h). The function
f in (3) can be expressed as a function ofh as

f (h) , E[Φ(h;br)]

with
Φ(h;b) = ‖b−R(h)yr‖2

The LMS algorithm is then performed on vectorh. The ini-
tialization is defined byh0 = 0. For the learning sequence,
the bit vectorbr is known by the receiver, and the up-date
equation is given by

hr+1 = hr −µOΦh(hr ;br) (4)

whereµ is the step-size of the algorithm, andOΦx(x;b))
denotes the gradient ofΦ at point(x;b) with respect tox. It
can be shown that

OΦh(hr ;br) = 2(Yrh∗
r −R(yrbH

r )),

whereYr , IKNb ⊗ (yryH
r ). For the decision-directed se-

quence,br is estimated: equation (4) then becomes

b̂(r) = sign(R(hr)yr)

hr+1 = hr −µOΦh(hr ; b̂r)

For appropriateµ, and after a long enough learning se-
quence, the algorithm converges, i.e. the vectorhr is close to
the optimal vector at timer. This convergence is assured if
the functionf is strictly convex. Now, one can show that this
assumption is equivalent to haveΩr , σ2Λr +WrWH

r posi-
tive definite, whereWr , ΛrΠ. However, due the particular
structure ofΛr , Ωr is only positive semi-definite, which may
cause poor convergence, or convergence to a non-optimal so-
lution. A means to overcome this inconvenience consists of
slightly modifying Ωr by reinforcing its diagonal, i.e. by
changingΩr into Ωr + εINsKNbL with small ε. Obviously,
this cannot be achieved on the theoretical matrixΩr , which
is not available for the receiver, but can be obtained from
the received datayr by adding a zero-mean Gaussian vector
with covariance matrixεINsKNbL. Note that this is not equiv-
alent to add an AWGN with varianceε to the continuous re-
ceived signaly(t), since, in that case,Ωr would simply be
transformed into(σ2 + ε)Λr +WrWH

r , which would also
be semi-definite. Thus, this slight correction must not be re-
garded as an increase of the noise level, but as a modification
of the noise structure.

3.2 The DS-CDMA case

Consider now the DS-CDMA system. For such a system, the
bits (bk( j)) j∈Z of thekth user are modulated by a signature
waveform (code)sk(t), which is assumed to be zero outside
the interval[0,T]. The signal transmitted by userk is then

∑
j∈Z

bk( j)sk(t − jT ),

and the received signal, whenB bits are transmitted per user,
can be expressed as:

ỹ(t) =
L

∑
l=1

K

∑
k=1

B

∑
j=1

ck,l (t)bk( j)sk(t − jT − τk,l )+n(t)

Given codes(sk(t))k and delays(τk,l )k,l , ỹ(t) can be sampled
in a similar way as fory(t) in section 2.2, yielding vector̃yr
such that

ỹr = Λ̃rŨbr + ñr
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whereΛ̃r is the matrix formed by the correlations∫
ck,l (t)c∗k′,l ′(t)sk(t − jT − τk,l )sk′(t − j ′T − τk′,l ′)dt,

Ũ = 1L ⊗ IKNb, andñ is a zero-mean Gaussian vector with

covariance matrixσ2Λ̃r . The structure of̃yr is then similar
to that ofyr in (2). Thus, an equivalent LMS algorithm can
be performed (note that the convexity problem mentioned in
the RPMA case still occurs in that case, and can be solved in
a similar way).

4. SIMULATION RESULTS

This section presents some simulation results. The objec-
tive here is: i) to observe the convergence of the chan-
nel coefficient vectorshr , and: ii) to evaluate the perfor-
mance of the RPMA system, by computing the bit error rate
(BER), and compare the results to those of the DS-CDMA.
For these simulations, one defines the users’ characteristics
(i.e., parametersK, Nb, Ns, and the permutation matrices),
which fixes the matrixΠ. The channels are independent
Rayleigh-fading time-varying channels generated according
to the Jake’s model, which enables to compute the matri-
cesΛr . An important parameter for the simulations is the
signal-to-noise ratio (SNR), which fixes the varianceσ2 to
be used for the additive Gaussian noise. More precisely, for
non-random time-varying channel coefficients, the signal is
non-stationary, and one must resort to a meanSNR( denoted
SNR), defined by

SNR=
∑i E

[
|xr(i)|2

]
∑i E

[
|nr(i)|2

] , (5)

where xr , yr − nr (i.e., xr is the unnoisy received

data). Now, ∑i E
[
|xr(i)|2

]
= trace(Cov(xr)) =

trace(E[ΛrΠbrbT
r ΠTΛH

r ]) = trace(WrWH
r ), and

∑i E
[
|nr(i)|2

]
= trace(Cov(nr)) = σ2trace(Λr). Fi-

nally, the varianceσ2 is obtained by:

σ
2 =

trace(WrWH
r )

trace(Λr)
10−SNR/10. (6)

In fig. 2 is plotted the evolution of the coefficient vectors
hr obtained first with non-varying channels. The simulated
channels are Rural-Area channels. The number of users is
K = 2, and the number of paths per user isL = 2. The
spreading factor isNs = 8, and the number of bits per block
is Nb = 2. The mean powers are -0.97dB and -4.58dB for
the two paths of user 1, and -0.61dB and -4.76dB for the two
paths of user 2 (the powers of both users are then similar);
moreover, the delays are:τ1,1 = 4.7e−6s,τ1,2 = 13.3e−6s,
τ2,1 = 1.1e−6s, andτ2,2 = 12.4e−6s. The other parameters
are:Ts = 4.88e−7s,Ns = 8,Nb = 2, andSNR= 10. For clar-
ity, only 10 out of 256 coefficients are presented. Moreover,
the optimal coefficients are also plotted, for comparison. It
can be shown that for such channels, the optimal matrixHε

r
of these coefficients (including the correction of the covari-
ance matrix diagonal mentioned in section 3.1) is given by
[2]:

Hε
r = ΠTΛH

r

(
σ

2Λr + εINsKNbL +ΛrΠΠTΛH
r

)−1
(7)

Figure 2: Evolution of the coefficients for constant channels
for RPMA. solid: estimated - dotted: optimal.

whereΛr remains constant during the simulation (since the
channels are static in that case). One can see on these fig-
ures that the LMS algorithm converged towards the optimal
after approximately 2.9ms, which corresponds to 6e3 itera-
tions (or blocks).

Fig. 3 presents equivalent curves, obtained with the same
channels as previously, but with a vehicle speed equal to
30km/h, which leads to a coherence time equal to 7.2ms.
5e3 blocks have been used for the learning sequence, and
15e3 for the decision-directed sequence. The optimal coef-
ficients are also plotted: these coefficients are obtained from
(7), where the matrixΛr is now varying at each iteration, ac-
cording to the channel coefficient variations. One can see that
the algorithm converges after about 103 blocks, and succeeds
in tracking the time-variations of the optimal coefficients, as
long as these variations are not too fast (for the first 15e3
blocks). Now, when these variations accelerate (from the
15.e3th block), this tracking is more difficult. Fig. 4 presents
the results obtained for the same channels with the equiva-
lent LMS algorithm derived for the DS-CDMA system. This
latter uses Gold codes, with 7 chips, which corresponds to
the number of “chips” (Ns = 8) used for the RPMA system.
The learning sequence uses 104 bits, which is equivalent to
the 5.103 blocks ofNb = 2 bits used in RPMA. The variance
is there obtained from the meanSNRas in (6) by replacing
Wr andΛr by W̃r andΛ̃r , respectively (with̃Wr , Λ̃rŨ).
Also, the optimal coefficient matrix is obtained from (7) by
replacingΠ andΛr by 1L ⊗ IKNb andΛ̃r . The conclusion is
quite similar to that of the previous figure.
Fig. 5 presents the BER (computed on the decision-directed
sequence) as a function ofSNRfor the previous channels,
for both the RPMA and the DS-CDMA systems. For the for-
mer, the figure shows the results of the two bits of each block
(sinceNb = 2). Clearly, the RPMA system gives better per-
formance than the DS-CDMA system. This can be explained
by the fact that the RPMA introduces some time-diversity
in the bit sequence due to the permutation-based interleav-
ing. This time-diversity provides more robustness vis--vis
the channel fades (in the time domain).
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5. CONCLUSION

In this paper is developed an adaptive algorithm suited for
a spread-spectrum system based on random permutations,
named RPMA, in the case of unknown selective channels.
An equivalent algorithm is also studied for the DS-CDMA
system. The simulations have shown that the convergence
behaviors of both algorithms are similar under equivalent
transmission characteristics. In particular, the algorithms are
able to track the optimal coefficients, as long as the time-
variations are not too fast. However, in any case, the RPMA
performs better. Now, theoretically (i.e. with known chan-
nels), the RPMA performs better than to the DS-CDMA sys-
tem especially in presence of fast fading [2], and when the
time-spreading (i.e. the parameterNb) is high. But, in this
context (which implies fast optimal coefficient variations and
larger vector dimensions), the tracking is difficult, and the be-
havior of the LMS algorithm remains far from that of the op-
timal LMMSE detector. To overcome this problem, greater
values of the algorithm step-size have been tested, but the
tracking becomes quite “noisy” and divergence may even oc-
cur. Also, a normalized LMS algorithm [3] has been consid-
ered, without satisfying results. A possible way to improve
the tracking would consist of reducing the complexity of the
algorithm, i.e. of considering coefficient vectors with smaller
dimensions. This could be achieved by adapting the pro-
posed algorithm for parallel detection, according to the prin-
ciple of Parallel-Interference-Cancelation (PIC) techniques.
Moreover, it is still assumed here that the channel delays are
known to the receiver. If this assumption does not hold, a
possible approach would consist of considering the delays as
multiple of the “chip” period (which is roughly the inverse of
the signal bandwidth), up to a maximum given by the max-
imum delay spread. These two issues are currently under
study.
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Figure 3: Evolution of the coefficients for time-varying chan-
nels for RPMA. solid: estimated - dotted: optimal.

Figure 4: Evolution of the coefficients for time-varying chan-
nels for DS-CDMA. solid: estimated - dotted: optimal.

Figure 5: BERs for RPMA (solid) and DS-CDMA (dashdot).
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