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ABSTRACT
The Conjugate Gradient (CG) has been shown recently to be equiv-
alent to the MultiStage Wiener Filter (MSWF) [1] which is an
effective tool for interference suppression in space-timeadaptive
processing radar. In this paper, we give further insight on the
interconnection between the MSWF and the CG. We propose a
modified version of the CG for low sample support where we use
the forward/backward (f/b) averaging for estimating the covari-
ance estimation. The new algorithm takes benefits of the CG for
rank compression and of the (f/b) subaperture smoothing forsam-
ple support compression [2]. The effectiveness of the algorithm is
demonstrated through simulations.

1. INTRODUCTION

SpaceTime Adaptive Processing (STAP) is a two dimensional
adaptive filtering algorithm that combines signals from multiple
channelsN and pulsesM to suppress interferences (clutter and
jamming) in airborne or space borne radar [3]. In the optimum
processor the weight vector which maximizes the signal to inter-
ference plus noise ratio SINR is given bywopt = κR−1s where,
R is the covariance matrix of the interferences andκ a constant
gain. Since the covariance matrix is not known, Reed et al. [4] pro-
posed the Sample Matrix Inversion (SMI) based on replacingR by
the sample average estimateR̂. In general, there are two computa-
tional criteria that practical implementation should ideally possess
to achieve sufficient interference suppression; rapid convergence
(i.e. small sample support size) and low computationally complex-
ity. Thus sample matrix inversion (SMI) is a poor technique for the
weight computation because it converges slowly requiring awide
sense stationary (WSS) sample support ofK = 2NM samples to
obtain an SINR performance within 3dB of the optimal one in the
Gaussian case, with a computational load ofO((NM)3). For high
interference to noise ratio (INR) cases, the principal components
(PC) approach and an appropriately diagonally loaded sample co-
variance estimate (LSMI) can reduce the sample support require-
ment toO(2r), wherer is the dimension of the dominant subspace
[5, 6]. However, this still have a high computational cost due to
matrix inversion and eigendecomposition. Recently, reduced-rank
filters have attracted a considerable amount of research dueto their
satisfactory adaptive performance and low complexity. Goldstein
et al. [7] proposed the Multistage Wiener Filter (MSWF) which
has, in one hand, a considerable rank compression compared to
the principal component based filter, and in another hand, a lin-
ear computational costO(NM) when using efficient architectures

[8, 9]. In [10] Hiemstra has shown through extensive Monte Carlo
simulations that the MSWF has practically the same sample sup-
port requirement as the PC method ofO(2r). In [9], the authors
have showed that the MSWF can be identified to be the solution of
the Wiener-Hopf equation in the Krylov subspace defined by the
covariance matrix of the observation and the cross correlation vec-
tor of the observation and the desired signal. Recently, theauthors
in [1, 11] have shown the subspace equivalence of the conjugate
gradient to the MSWF. In almost of these works, the applications
take place in the context of communication systems. In this pa-
per we give further insight on the interconnection between the CG
and MSWF. We analyse the performance of the CG for interfer-
ence suppression in STAP-radar. We also propose an iterative ver-
sion of CG for low support data using the forward/backward (f/b)
subaperture smoothing [2] for estimating the covariance matrix.
This paper is organized as follows. In section 2, we introduce the
data model. The concept of Krylov subspace projection algorithms
along with the MSWF is presented in section 3. The Conjugate
Gradient algorithm and the low sample support version are pre-
sented in section 4 and 5 respectively. After simulations insection
6, few concluding remarks are drawn in section 7.

2. DATA MODEL

We consider a pulsed Doppler radar mounted on an airborne plat-
form moving at constant speedvp. The radar antenna is a uni-
formly spaced linear array consisting ofN elements. The radar
transmits a coherent burst ofM pulses at a constant pulse repe-
tition frequency (PRF)fr = 1/Tr over a set of range directions
of interest. The returned space-time snapshot may consist of the
target echo and interferences such as jammer, clutter and thermal
noise, and is given by [3]

x = αtvt + n (1)

where

• x = [x1, ..., xMN ]T is the array output vector

• αt andvt ≡ v(̟t, νt) are the complex target attenuation
factor and target steering signal vector, respectively, associ-
ated with the spatial and Doppler parameters̟t , νt so that
[3]

v(̟t, νt) = b(̟t) ⊗ a(νt) (2)

with



– a(νt) = [1 ej2πνt · · · ej2π(M−1)νt ]T is the tempo-
ral steering vector (νk = ft

fr
, ft is the target Doppler

frequency ).
– b(̟t) = [1 ej2π̟t · · · ej2π(N−1)̟t ]T is the spa-

tial steering vector (̟ t = d
λ
sin(θt), d is the element

separation distance,λ is the wavelength andθt is the
target azimuth angle).

• n = [n1, ..., nMN ]T

The interference vectorn is supposed to be due to clutternc, jam-
mernj and thermal noisenw supposed to be spatially and tempo-
rally white

n = nc + nw + nj (3)
If we suppose that these components are uncorrelated complex

gaussian random variables, then the interference (clutter+ jammer
+ thermal noise) space-time covariance matrixR is

Ri = E{nn
H} = Rc +

NjX
i=1

Rj(i) + σ2
INM (4)

whereNj is the number of jammers,Rj(i) is the covariance
matrix of theith jammer,Rc is the clutter covariance matrix,σ2 is
the noise variance andINM denotes the identity matrix of dimen-
sionNM × NM . The jamming plus clutter covariance matrix is
generally of low rankr (r = N + (β + Nj)(M − 1))[3]. This
rank deficiency is exploited [5] to derive fast STAP algorithm.

3. MULTISTAGE WIENER FILTER (MSWF)

The Multistage Wiener Filter was introduced in [7], as shownin
figure 1 for rankD = 3, it is divided into two distinct recursions.
In the first one (forward recursion or analysis stage) (see table 1)
the filter decomposes the observed process,x, by a sequence of
orthogonal projections [7]. Rank reduction is accomplished by
truncating this decomposition at the desired number of stages,D.
The resulting transformation is given by1

Tmwf =
�

h1 BH
1 h2 BH

1 BH
2 h3 · · · QD−1

i=1 BH
i hD

�
=
�

h1 h2 h3 · · · hD

�
(5)

wherehi =
r
xi−1di−1


rxi−1di−1




 is the normalized cross correlation be-

tween the reference signaldi−1 and the observed dataxi−1 on
each previous stage andBi= I − hih

H
i are the blocking matri-

ces.
It is shown in [9, 12] that the weight vectorw lies in theD

Krylov subspace [11]KD(h1,Rx0
) and the following identity

holds:

Tmwf ≡ span{h1, Rx0
h1,R

2
x0

h1, . . . ,R
D−1
x0

h1} ≡ KD(h1,Rx0
).

(6)
In this stage the covariance matrix is transformed to a tridiag-

onal and is given by

Rd = TmwfRx0
T

H
mwf (7)

=

26666664 σ2
d0

δ1 0 . . . 0
δ1 σ2

d1
δ2 . . . 0

0 δ2 σ2
d2

. . .
...

...
...

. . .
. . . δNM−1

0 0 . . . δNM−1 σ2
dNM−1

37777775 (8)

1The last equality is due to the fact that theh’s are orthogonal.

Forward Recursion (Analysis Stage)
for i = 1 to D do
rxidi

(n) = E{xi(n) d∗

i (n)}
δi(n) = ‖rxidi

(n)‖
hi+1 = rxidi

(n)/ δi(n)
Bi+1 = null(hi+1) = I− hH

i+1hi+1

di+1(n) = hH
i+1xi(n)

σ2
di

= E{|di(n)|2}
xi+1(n) = Bi+1xi(n)

End for
Backward Recursion(Synthesis Stage)
for i = D to 1 do

wi = δi/ξi

ǫi−1(n) = di−1(n) − wiǫi(n)

ξi−1 = E{|ǫi−1|2 }
= σ2

di−1
− δ2

i /ξi

End for

Table 1. MSWF Recursion equations

whereσ2
di

andδi are defined in table 1.
After the forward recursion is completed the MSWF computes

a nested chain of scalars which represent the solutions to ofthe
transformed Wiener filter. The weight vector is then given by

w = s − B
H
0 Tmwfwmwf (9)

wmwf = R
−1
d rdd0

(10)

whereB0 = I−ssH , Rd = E[ddH ] with d = [ d1 d2 · · · dr ]

andrdd0
= E[ddH

0 ]
The complete set of the MSWF recursions are given in table 1
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Fig. 1. Multistage Wiener Filter (RankD=3)

4. CONJUGATE GRADIENT

The method of conjugate gradient is an iterative technique for solv-
ing symmetric positive definite linear systems. We considerthe
Wiener-Hopf equation

Rx0
w = rxd (11)



w0(n) = 0, p1(n) = g0(n) = rx0d0

ρ0(n) = g0(n)Hg0(n)
R(n) = µR(n − 1) + x(n)xH(n)

for i = 1 to D do
zi(n) = R(n) pi(n)

αi(n) = ρi(n)

pi(n)Hzi(n)

wi(n) = wi−1(n) + αi(n)pi(n)
gi(n) = gi−1(n) − αi(n)zi(n)
ρi(n) = gi(n)Hgi(n)

ηi(n) = ρi(n)
ρi−1(n)

pi+1(n) = gi(n) + ηi(n)pi(n)
End for

Table 2. Recursive Conjugate Gradient Algorithm

A possible approach to derive the CG solution of (11) is the mini-
mization of the following cost function

φ(w) = w
H
Rx0

w−2Re(rx0d0
w) (12)

Table 2 depicts an iterative version of the CG [13], Thep′

is
areRx0

-conjugate search directions i.e.

p
H
i Rx0

pj = 0 ∀i 6= j (13)

Theorem 1 After D iterations of the CG algorithm (table 2) we
have the following identities

span{w(1),w(2) . . . ,w(D)} ≡ span{p1,p2 . . . ,pD}
≡ span{g1,g2 . . . , gD}
≡ KD(rxd,Rx0

)
(14)

For the proof see [13]
Theorem 1 means that the solution to the weight vector for the
Wiener-Hopf equation in (11) using the CG lies in the same sub-
space as the weight vector resulting from the MSWF and the re-
sulting reduced rank transformation is given by the search direc-
tions vectors:

TCG = [ p1,p2 . . . , pD] (15)

Another connection to MSWF is that the CG also tridiagonalize the
covariance matrixRx0

[14] where the elements of the transformed
matrix using the MSWFRd. Based on the work in [15] and the
equivalence of both CG and MSWF to Lanczos algorithm [1] the
the relationship between the CG and MSWF coefficients can be
easily found and is given by the following equations

σ2
di+1

=

(
1

αi
for i = 1

1
αi

+
ηi−1

αi−1
for i > 1

(16)

δi+1 =

√
ηi−1

αi−1
(17)

whereαi andηi are defined in table 2.
One desirable feature of the CG is that it is a forward only recur-
sion and the weight vector is available at each iteration as shown in
figure 2, this property simplifies real time adaptation (for example,
by evaluating the SINR output at each stage).
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Fig. 2. Conjugate Gradient implementation

Fig. 3. Schematic of forward/backward subaperture for a single
snapshot

5. A LOW SAMPLE SUPPORT CG ALGORITHM

In this section, we introduce the modified version of the CG by
exploiting the space-time data structure to generate additional data
vectors of reduced size for the covariance matrix estimation us-
ing the generalized forward/backward smoothing [2]. As shown in
figure 3 the method consists in exploiting the symmetry property
of the antenna array and temporal sampling as in the traditional
forward/backward spatial smoothing. Suppose that the subspatial
vector dimension isL and the subtemporal vector dimension isJ ,
then the total vector size isJL and the effective number of snap-
shots is increased by a factor of(M −J−1)(N −L−1), whereas
the steering vector size isJL. We then propose to replace the es-
timated covariance matrix in the CG algorithm given in table2 by
the new covariance estimateRfb ∈ CJL×JL using the forward
and backward dataxf , xb as described by the following set equa-
tions.

Rf (n) = Rf (n − 1) + µxf (n)xH
f (n) (18)

Rb(n) = Rb(n − 1) + µxb(n)xH
b (n) (19)

Rfb(n) = 0.5(Rb(n) + Rf (n)) (20)



whereRf ∈ CJL×JL andRb ∈ CJL×JL define the forward and
backward covariances estimates. The vectorsxf (n) andxb(n)
are defined by concatenating the rows of the forward backward
submatrices, respectively ( see figure 3).

6. SIMULATION RESULTS

The simulation model used is anN = 14 elements uniform linear
array withM=16 delay taps at each element. The clutter is com-
plex gaussian distributed with clutter to noise ratio (CNR)40 db at
each element. We assume the presence of 4 barrage jammers lo-
cated at [-60◦ -30◦ 45◦ 60◦] with respect to the flight direction and
with jammer to noise ratio JNR [40 30 40 30]dB respectively. As
a measure of performance we use the SINR loss as defined below

SINRLoss =
σ2

NM

��wHs
��2

wHRiw
(21)

All the simulations were realized over 100 Monte Carlo runs.
Figure 4 shows the performance of the CG, MSWF, PC as a func-
tion of the rank2 using the sample covariance matrix estimate for
a sample supportK = 100. We clearly note that the PC method
is not able to achieve optimal output SINR until the rank equals
the rank of the interference. Note that underestimating therank
results in degradation in SINR output whereas the MSWF and CG
attain the optimal performance at very lower rank. We note that the
CG has the same performance as the MSWF for low ranks values
whereas for higher rank values the MSWF performance degrades
considerably. This can be explained by the loss of orthogonality in
the basis vectorshi obtained with the MSWF. A correction to this
problem has been proposed in [16]by using nested Householder
transformations at the output observations.

Figure 5 demonstrates the effectiveness of the proposed method
using forward/backward subaperture smoothing for accelerating
the convergence in terms of the sample support. The subtemporal
and subspatial vectors dimensions areJ = M −1 andL = N −1
respectively.

0 50 100 150
−40

−35

−30

−25

−20

−15

−10

−5

0

Rank

S
IN

R
 L

O
S

S
 (

dB
)

CG
MSWF
PC

Fig. 4. SINR Loss as function of rank for PC,MSWF and CG

2The rank here defines the reduction transformation rank
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7. CONCLUSION

In this paper, the application of Reduced rank filters based on
Krylov subspace projections in the STAP problem was studied.
After presenting the motivation of the need of low rank proces-
sors in real world environment, the outperformance of the Krylov
based subspace projection filters over eigenbased ones has been
presented via simulations. We proposed a low sample support
version of the CG by exploiting the space-time data structure to
generate additional data vectors using the forward/backward sub-
aperture smoothing. We demonstrated that this version provide
excellent performance for short data records.
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