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ABSTRACT [8, 9]. In [10] Hiemstra has shown through extensive Montd&a

The Conjugate Gradient (CG) has been shown recently to e-equ  Simulations that the MSWF has practically the same sampie su
alent to the MultiStage Wiener Filter (MSWF) [1] which is an Port requirement as the PC method®@f2r). In [9], the authors
effective tool for interference suppression in space-tadaptive have showed that the MSWF can be identified to be the solufion o
processing radar. In this paper, we give further insightlom t the Wiener-Hopf equation in the Krylov subspace defined lay th
interconnection between the MSWF and the CG. We propose acovariance matrix of the observation and the cross comelaec-
modified version of the CG for low sample support where we use for of the observation and the desired signal. Recentlyatitieors

the forward/backward (f/b) averaging for estimating the'aze in [1, 11] have shown the subspace equivalence of the coiguga
ance estimation. The new algorithm takes benefits of the GG fo gradient to the MSWF. In almost of these works, the applceti
rank compression and of the (f/b) subaperture smoothingsor-  take place in the context of communication systems. In this p
ple support compression [2]. The effectiveness of the #hyuris per we give further insight on the interconnection betwéenQG
demonstrated through simulations. and MSWF. We analyse the performance of the CG for interfer-

ence suppression in STAP-radar. We also propose an itenativ
sion of CG for low support data using the forward/backwarid)(f
subaperture smoothing [2] for estimating the covariancérima
This paper is organized as follows. In section 2, we intredie
data model. The concept of Krylov subspace projection dlyos
along with the MSWF is presented in section 3. The Conjugate
Gradient algorithm and the low sample support version aee pr
sented in section 4 and 5 respectively. After simulatiorseiction

6, few concluding remarks are drawn in section 7.

1. INTRODUCTION

SpaceTime Adaptive Processing (STAP) is a two dimensional
adaptive filtering algorithm that combines signals from tiple
channelsN and pulsesM to suppress interferences (clutter and
jamming) in airborne or space borne radar [3]. In the optimum
processor the weight vector which maximizes the signal terin
ference plus noise ratio SINR is given oxy,,: = kR~ 's where,

R is the covariance matrix of the interferences and constant
gain. Since the covariance matrix is not known, Reed et aprit 2. DATA MODEL

posed the Sample Matrix Inversion (SMI) based on replaBiigy

the sample average estim&e In general, there are two computa- e consider a pulsed Doppler radar mounted on an airborme pla

tional criteria that practical implementation should iflepossess form moving at constant speag. The radar antenna is a uni-
to achieve sufficient interference suppression; rapid @@ence  formly spaced linear array consisting of elements. The radar

(i.e. small sample support size) and low computationallpgiex-  transmits a coherent burst 8f pulses at a constant pulse repe-
ity. Thus sample matrix inversion (SMI) is a poor technigoethe tition frequency (PRFY, = 1/7. over a set of range directions
weight computation because it converges slowly requirimgoe of interest. The returned space-time snapshot may corfsiseo

sense stationary (WSS) sample supporiof= 2N M samplesto  target echo and interferences such as jammer, clutter @nchéih
obtain an SINR performance within 3dB of the optimal one mth  noise, and is given by [3]

Gaussian case, with a computational load®¢f N M)?). For high

interference to noise ratio (INR) cases, the principal congnts X = Vi +n (1)
(PC) approach and an appropriately diagonally loaded sanpl

variance estimate (LSMI) can reduce the sample supporireequ  \where

ment toO(2r), wherer is the dimension of the dominant subspace

[5, 6]. However, this still have a high computational cose da o x = [r1,...,zmn]" is the array output vector

matrix inversion and eigendecomposition. Recently, redu@nk o a; andv, = v(wy, 1) are the complex target attenuation
filters have attracted a considerable amount of researctodhbeir factor and target steering signal vector, respectiveboeis
satisfactory adaptive performance and low complexity. dStin ated with the spatial and Doppler parametets, v; so that
etal. [7] proposed the Multistage Wiener Filter (MSWF) which 3]

has, in one hand, a considerable rank compression compared t
the principal component based filter, and in another hand-a |
ear computational cog§2(N M) when using efficient architectures with

v(@, 1) = b(w) @ a(v) @)



—a(y) =[1 2™ ... 227M=DrT is the tempo-
ral steering vectorif, = ;—j ft is the target Doppler
frequency ).

— b(w) = [1 &2t... d27(N-1D=|T ig the spa-

tial steering vectords; = £sin(6;), d is the element
separation distance, is the wavelength ané; is the
target azimuth angle).

e N = [nl, ceey nMN]T
The interference vectat is supposed to be due to clutter, jam-
mern; and thermal noise., supposed to be spatially and tempo-
rally white

n=n;+n, +n; 3)

If we suppose that these components are uncorrelated comple
gaussian random variables, then the interference (cluje@nmer
+ thermal noise) space-time covariance maRixs

Nj

R; = E{nn”} = R¢ + Z R, (i) + o’ Inus 4)
=1
where N; is the number of jammer®; (i) is the covariance

matrix of the;*" jammer,R. is the clutter covariance matrixt? is

the noise variance arldy »; denotes the identity matrix of dimen-

sion NM x N M. The jamming plus clutter covariance matrix is

generally of low rank- (r = N + (8 + N;)(M — 1))[3]. This

rank deficiency is exploited [5] to derive fast STAP algarith

3. MULTISTAGE WIENER FILTER (MSWF)

The Multistage Wiener Filter was introduced in [7], as shawn
figure 1 for rankD = 3, it is divided into two distinct recursions.
In the first one (forward recursion or analysis stage) (sbke th)
the filter decomposes the observed procasdyy a sequence of
orthogonal projections [7]. Rank reduction is accomplikHog
truncating this decomposition at the desired number ofestdg.
The resulting transformation is given by

Tmwsr =[ hi Bf'hy BIBYhs -~ [12;'Bfhp |
=[h hy hs -+ hp]
(5)
whereh; = —Xi=1%-1_ s the normalized cross correlation be-

Txj_1d;_1
tween the reference signd}_; and the observed data,_; on
each previous stage af8;= I — h;h¥ are the blocking matri-
ces.
It is shown in [9, 12] that the weight vectar lies in the D
Krylov subspace [11C” (h1, Rx,) and the following identity
holds:

Tows = span{hi, Rx,h1, RE hi, ..., Rey 'hi} = K (h1, Ry, ).
(6)

In this stage the covariance matrix is transformed to aagsdi
onal and is given by

Rd = mef Rxo T;Frlzwf (7)
U?zo (51 0 e 0
(51 0’31 (52 e 0
- | o & o3 : ®)
: . ONM—1
0 0 ... ONM-1 Ohg, .

1The last equality is due to the fact that this are orthogonal.

Forward Recursion (Analysis Sage)
for: =1to D do
ro.q,(n) = E{wi(n) di(n)}
i(n) = |lrz;q, (n)|l
hiyn = Teid; (n)/ 52'(77,
B7;+1 = null(hhq) =1I-— hﬁlhi+1

di+1(n) = hﬁlxl(né
oi = E{|di(n)*}
xi+1(n) = Biyixi(n)
End for

Backward Recursion (Synthesis Stage)
fori=Dto1ldo

w; = 0;/&
ez;l(n) = dz;l(n) — wlel(n)
&ir =E{lal}
=03, , — 0 /&
End for

Table 1. MSWF Recursion equations

Whereai andJ; are defined in table 1.

After the forward recursion is completed the MSWF computes
a nested chain of scalars which represent the solutions teof
transformed Wiener filter. The weight vector is then given by

W =8 — B();{mefwmwf (9)
Winws = Ry 'Tad, (10)
whereBo = I-ss”, Ry = E[dd”|withd =[ di do -+ d; ]

andraq, = E[dd{]
The complete set of the MSWF recursions are given in table 1

Main Beam

Fig. 1. Multistage Wiener Filter (Rank=3)

4. CONJUGATE GRADIENT

The method of conjugate gradient is an iterative techniquediv-
ing symmetric positive definite linear systems. We consttier
Wiener-Hopf equation

RX[)W = Txd (11)



wo(n) =0, py(n) = go(n) = rxd,
po(n) = go(n)"go(n)
R(n) = pR(n — 1) + x(n)x (n)
fori =1toDdo

w(n) = R() pi(n)

a(n) = g

wi(n) =wi-1(n)+ ai(n)pi(n)

gi(n) = gi1(n) — ai(n)z:(n)

pi(n) = gi(n)"gi(n)

m(n) = pzpi(;élb)

pi+1(n)  =gi(n) + ni(n)pi(n)

End for

Table 2. Recursive Conjugate Gradient Algorithm

A possible approach to derive the CG solution of (11) is theimi
mization of the following cost function

p(w) = WHRwOW—2Re(rzodow) (12)

Table 2 depicts an iterative version of the CG [13], Tiie
areR«,-conjugate search directions i.e.

Pi Ruop; =0 Vi#j (13)

Theorem 1 After D iterations of the CG algorithm (table 2) we
have the following identities

span{wH w® . wP =span{pi,p2 ...,pp}
= span{g1,82 ..., 8D}
= KP(red, Rux,)
(14)

For the proof see [13]
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Fig. 2. Conjugate Gradient implementation

Backward

! Yoo Yy Taoay Yoo

[

u2 X1y

Fig. 3. Schematic of forward/backward subaperture for a single

Theorem 1 means that the solution to the weight vector for the Snapshot

Wiener-Hopf equation in (11) using the CG lies in the same sub
space as the weight vector resulting from the MSWF and the re-

sulting reduced rank transformation is given by the seandtd
tions vectors:

Tce =[P1;,pP2 ---,PD] (15)
Another connection to MSWF is that the CG also tridiagoretie

covariance matriR, [14] where the elements of the transformed

matrix using the MSWHR ;. Based on the work in [15] and the

5. ALOW SAMPLE SUPPORT CG ALGORITHM

In this section, we introduce the modified version of the CG by
exploiting the space-time data structure to generateiadditdata
vectors of reduced size for the covariance matrix estimatis-

ing the generalized forward/backward smoothing [2]. Asrahin
figure 3 the method consists in exploiting the symmetry priype

equivalence of both CG and MSWF to Lanczos algorithm [1] the of the antenna array and temporal sampling as in the traditio
the relationship between the CG and MSWF coefficients can be fonward/backward spatial smoothing. Suppose that thepziias

easily found and is given by the following equations

I for i=1 16
Tdin T L 42 fori>1 (16)
dit1 = 07:1 (17)

wherea; andn; are defined in table 2.

One desirable feature of the CG is that it is a forward onlyrec
sion and the weight vector is available at each iteratioma/s in
figure 2, this property simplifies real time adaptation (fample,
by evaluating the SINR output at each stage).

vector dimension id. and the subtemporal vector dimensiotyis
then the total vector size i$L and the effective number of snap-
shots is increased by a factor@/ — J—1)(IN — L —1), whereas
the steering vector size i5L. We then propose to replace the es-
timated covariance matrix in the CG algorithm given in tabley
the new covariance estimaR;, € C’**7L using the forward
and backward datay, x; as described by the following set equa-
tions.

Rj(n) = Ry(n — 1) + pxs(n)xy (n) (18)
Ry (n) = Ro(n — 1) + pxp(n)xy (n) (19)
Rysp(n) = 0.5(Ry(n) + Ry(n)) (20)



whereR; € C71*'L andR,;, € ¢/L*7F define the forward and 0 "
backward covariances estimates. The vecioré:) and x;(n) -10F

are defined by concatenating the rows of the forward backward
submatrices, respectively ( see figure 3).

1 CG
= = CG with traditional f/b -
= CG with subspatio-temporel f/b

!
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6. SIMULATION RESULTS

50k

SINR Loss (dB)

The simulation model used is avi = 14 elements uniform linear
array with M=16 delay taps at each element. The clutter is com-

—60-

plex gaussian distributed with clutter to noise ratio (CMB)b at 70l i
each element. We assume the presence of 4 barrage jammers lo-

cated at [-60 -30° 45° 60°] with respect to the flight direction and e |
with jammer to noise ratio JNR [40 30 40 30]dB respectivelg. A “sof 1

a measure of performance we use the SINR loss as defined below

L L L
[ 50 100 150 200 250

0’2 ‘WHS|2 Number of samples

IN 0ss — =
SINEL NM wER,w

(21)
Fig. 5. SINR Loss as function of rank for CG using traditional
f/b covariance estimate and CG with f/b subaperture covaea

All the simulations were realized over 100 Monte Carlo runs. .
estimate

Figure 4 shows the performance of the CG, MSWF, PC as a func-
tion of the rank using the sample covariance matrix estimate for
a sample suppork’ = 100. We clearly note that the PC method

is not able to achieve optimal output SINR until the rank dgjua
the rank of the interference. Note that underestimatingraim
e o n this papr, the aplcaton o Rectuced rak fters based o
CG has the same performance as the MSWF for low ranks valuesKryIOV SUbSp?CQ prOJect|_0n§ in the STAP problem was studied
whereas for higher rank values the MSWF performance degrade After.presentlng the motivation of the need of low rank pece
considerably. This can be explained by the loss of orthdggria sors in real world enwronmeqt, the outperformance of thylddr

the basis vectorh; obtained with the MSWF. A correction to this based subspace projection filters over eigenbased onesebas b

problem has been proposed in [16]by using nested Householde presented via simulations. We proposed a low sample support

transformations at the output observations version of the CG by exploiting the space-time data stractar
Figure 5 demonstrates the effectiveness of the proposdtbohet generate addltlonal data vectors using the fOfW?fd’ bam_ :ﬁ.ab'

using forward/backward subaperture smoothing for acatitey aperture smoothing. We demonstrated that this versionigeov

the convergence in terms of the sample support. The subtampo excellent performance for short data records.

and subspatial vectors dimensions dre- M —1andL = N —1
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