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ABSTRACT

This paper addresses the problem of single microphone
speech enhancement in noisy environments. State of the
art short-time noise reduction techniques are most often ex-
pressed as a spectral gain depending on Signal-to-Noise Ra-
tio (SNR). The well-known decision-directed approach dras-
tically limits the level of musical noise but the estimateda
priori SNR is biased since it depends on the speech spec-
trum estimated in the previous frame. The consequence of
this bias is an annoying reverberation effect. We propose
a method, called Reliable Features Selection Noise Reduc-
tion (RFSNR) technique, capable of classifying thea poste-
riori SNR estimates into two categories: the reliable features
leading to speech components and the unreliable ones corre-
sponding to musical noise only. Then it is possible to directly
enhance speech using these reliable components thus obtain-
ing an unbiased estimator.

1. INTRODUCTION

The problem of enhancing speech degraded by additive
noise, when only the noisy speech is available, has been
widely studied in the past and is still an active field of re-
search. Noise reduction is useful in many applications such
as voice communication and automatic speech recognition.

Scalart and Vieira Filho presented in [1] an unified view
of the main single microphone noise reduction techniques
where the process relies on the estimation of a short-time
spectral gain which is a function of thea priori Signal-to-
Noise Ratio (SNR) and/or thea posteriori SNR. They also
emphasize the interest of estimating thea priori SNR with
the decision-directed (DD) approach proposed by Ephraı̈m
and Malah in [2]. Capṕe analyzed the behavior of this esti-
mator in [3] and demonstrated that thea priori SNR follows
the shape of thea posteriori SNR with a one frame delay.
Consequently, since the gain depends on thea priori SNR,
it does not match anymore the current frame and thus it de-
grades the performance of the noise reduction system.

We propose a method, called Reliable Features Selection
Noise Reduction (RFSNR) technique, that uses thea priori
SNR estimated with the DD approach and thea posteriori
SNR in order to classify this latter into reliable or unreliable
features. This approach provides an efficient separation of
speech components from musical noise ones and ensures that
the enhanced speech is obtained using unbiased SNR estima-
tor. The present paper consists in an extension of the work
presented in [4], including deeper analysis and results over a
large corpus of signals.

2. NOISE REDUCTION PARAMETERS

In the classical additive noise model, the noisy speech is
given by x(t) = s(t) + n(t) wheres(t) and n(t) denote the
speech and the noise signal, respectively. LetS(p,k), N(p,k)
and X(p,k) designate thekth spectral component of short-
time framep of the speechs(t), the noisen(t) and the noisy
speechx(t), respectively. The objective is to find an esti-
mator Ŝ(p,k) which minimizes a given distortion measure
conditionally to a set of spectral noisy features. Since there
does not exist any direct solution for the spectral estima-
tion, we first derive an SNR estimate from the noisy features.
An estimate ofS(p,k) is subsequently obtained by applying
a spectral gainG(p,k) to each short-time spectral compo-
nent X(p,k). This gain corresponds to different functions
proposed in the literature (e.g. amplitude and power spec-
tral subtraction, Wiener filter, MMSE STSA,etc.) [5, 1, 2].
The choice of the distortion measure determines the gain be-
havior, i.e. the well-known trade-off between noise reduc-
tion and speech distortion. However, the key parameter is
the estimated SNR since it determines the efficiency of the
speech enhancement for a given noise power spectrum den-
sity (PSD).

Most of the classical speech enhancement techniques re-
quire the evaluation of two parameters, thea posteriori SNR
and thea priori SNR, respectively defined by

SNRpost(p,k) =
|X(p,k)|2

E[|N(p,k)|2]
, (1)

SNRprio(p,k) =
E[|S(p,k)|2]
E[|N(p,k)|2]

(2)

where E[.] is the expectation operator. Let us define an addi-
tional parameter, theinstantaneous SNR :

SNRinst(p,k) = SNRpost(p,k)−1. (3)

This parameter can be interpreted as an estimation of the lo-
cal a priori SNR in a way equivalent to power spectral sub-
traction and will be useful for the sake of analysis. In prac-
tical implementations, the PSDs of speech E[|S(p,k)|2] and
noise E[|N(p,k)|2] are unknown as only the noisy speech is
available, then these SNRs have to be estimated. The esti-
mation of the noise PSD, noted̂γn(p,k), is beyond our scope
and can be computed during speech pauses using recursive
averaging [1] or continuously using the Minimum Statistics
[6] to get a more accurate estimate in case of noise level fluc-
tuations.
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3. SNR ANALYSIS TOOL

In order to evaluate the behavior of speech enhancement
techniques, we propose to use an approach derived from the
one described by Renevey and Drygajlo in [7]. The basic
principle is to consider thea priori SNR versus thea pos-
teriori SNR in order to analyze the behavior of the features
defined by the 2-tuple(SNRpost ,SNRprio).

In the additive model, the amplitude of the noisy signal
can be expressed as|X(p,k)| =

√

|S(p,k)|2 + |N(p,k)|2 +2|S(p,k)||N(p,k)|cosα(p,k)
(4)

whereα(p,k) is the phase difference betweenS(p,k) and
N(p,k). The locala posteriori anda priori SNRs, assum-
ing the knowledge of the clean speech and the noise, can be
defined by

SNRlocal
post (p,k) =

|X(p,k)|2

|N(p,k)|2
, (5)

SNRlocal
prio (p,k) =

|S(p,k)|2

|N(p,k)|2
. (6)

By replacing|X(p,k)| in (5) by its expression (4) and
using (6), it comesSNRlocal

post (p,k) =

SNRlocal
prio (p,k)+1+2

√

SNRlocal
prio (p,k)cosα(p,k). (7)

This relation depends onα(p,k) which is an uncontrolled
parameter in speech enhancement techniques.

In the following, the discussion will be illustrated using a
French sentence corrupted by car noise at 12dB global SNR
but it can be generalized to other noise and SNR conditions.
The relation expressed by (7) is illustrated in Fig. 1. When
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Figure 1: SNRlocal
prio versusSNRlocal

post . Dark gray features:
clean speech and noise amplitudes are known in (5) and (6).
Light gray features: clean speech amplitude is known but es-
timated noise PSD is used in (5) and (6).

the clean speech and the noise amplitudes are known, the fea-
tures lie between two curves : the solid one (resp. dashed)
corresponds to the limit case whereα(p,k) = 0 (π) in (7),
i.e. noise and clean speech spectral components are added
in phase (phase opposition). These two limits define an area
where the feature repartition depends on the true phase dif-
ferenceα(p,k). When an estimated noise PSD is used in
(5) and (6) instead of the local noise, the estimation errors
lead to an important dispersion of the features outside of the
limit area for low SNR values and decrease the quality of the
enhanced speech.

4. DECISION-DIRECTED APPROACH

Using a given estimation of the noise PSD, thea posteriori
anda priori SNRs are estimated as follows

ˆSNRpost(p,k) =
|X(p,k)|2

γ̂n(p,k)
, (8)

ˆSNRprio(p,k) = β
|Ŝ(p−1,k)|2

γ̂n(p,k)

+(1−β )P[ ˆSNRpost(p,k)−1] (9)

where P[.] denotes the half-wave rectification andŜ(p−1,k)
is the estimated speech spectrum at previous frame. Thisa
priori SNR estimator corresponds to the so-called decision-
directed (DD) approach [2, 3] whose behavior is controlled
by the parameterβ (typically β = 0.98). The approaches
based on (8) and (9) to compute the spectral gain will be
referred to the DD algorithm.

4.1 Analysis

We can emphasize two effects of the DD algorithm which
have been interpreted by Cappé in [3]:
• When thea posteriori SNR is much larger than 0dB,

ˆSNRprio(p,k) corresponds to a frame delayed version of
ˆSNRpost(p,k)−1 = ˆSNRinst(p,k).

• When thea posteriori SNR is lower or close to 0dB,
ˆSNRprio(p,k) corresponds to a highly smoothed and de-

layed version of ˆSNRinst(p,k). The direct consequence
for the enhanced speech is the reduction of the musical
noise effect due to a lower variance.

This behavior is illustrated in Fig. 2 where we consider the
case of speech corrupted by additive car noise at a 12 dB
global SNR. The time varyinginstantaneous and a priori
SNR are represented for the frequency band centered on
467 Hz. The 20 first and the 17 last frames contain only noise
whereas the 19 frames in the middle contain noisy speech in-
cluding speech onset and offset. Notice that in this experi-
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Figure 2: SNR evolution over short-time frames (f =
467Hz). Solid line: instantaneous SNR; dashed line:a pri-
ori SNR.

ment, we have chosen the Wiener filter [1], without loss of
generality, to compute the spectral gain of the DD approach :

GDD(p,k) =
ˆSNRprio(p,k)

1+ ˆSNRprio(p,k)
. (10)
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The smoothing effect and the delay introduced by the DD
algorithm are clearly visible on Fig. 2. We can empha-
size that this delay is a drawback especially for speech non-
stationarities,e.g. speech onset and offset. Furthermore, it
introduces a permanent bias in gain estimation which lim-
its noise reduction performance and generates an annoying
reverberation effect.

In order to describe more precisely the behavior of the
DD approach, the 2-tuple( ˆSNRpost , ˆSNRprio) is represented
in Fig. 3 where thea posteriori anda priori SNRs are es-
timated using (8) and (9), respectively. To analyze this fig-
ure, the case where SNRs are computed using known clean
speech amplitude and estimated noise PSD (cf. Fig. 1) is
used as reference. Note that in such a case, the estimated
a posteriori SNR are the same in Fig. 1 and 3 since equa-
tion (5) resumes to (8). In Fig. 3 a large part of thea priori
SNR features (approximately 60%) is underestimated which
illustrates the effect of the DD bias on SNR estimation.
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Figure 3: ˆSNRprio versus ˆSNRpost for the DD approach. The
three lines illustrate equation (7) whereα(p,k) = 0 (bold
solid line),α(p,k) = π (dashed line) andα(p,k) = π

2 (thin
solid line).

If we consider the case where a speech component ap-
pears abruptly at framep, assuming that̂S(p− 1,k) = 0 in
equation (9), then for the current frame we have

ˆSNRprio(p,k) = (1−β )P[ ˆSNRpost(p,k)−1]. (11)

Actually, the estimateda priori SNR will be a version of
the a posteriori SNR attenuated by(1− β ). If β = 0.98
(typical value), this attenuation is around 17dB. Note that
if α(p,k) = π

2 , equation (7) becomes

SNRlocal
prio (p,k) = SNRlocal

post (p,k)−1. (12)

This relationship is illustrated in Fig. 3 by the thin solid line.
Thus, the attenuation introduced by 1− β in equation (11)
is materialized by a high concentration of features around a
shifted version (by−17dB) of this thin line curve. This offset
corresponds to the maximum bias and it is consistent with the
degradation introduced by the DD approach during speech
onsets and more generally when speech amplitude increases
rapidly.

We can also observe in Fig. 3 that somea priori SNR
features are overestimated. This case occurs when a speech
component disappears abruptly,i.e. P[ ˆSNRpost(p,k)−1] = 0
leading to

ˆSNRprio(p,k) = β
|Ŝ(p−1,k)|2

γ̂n(p,k)
(13)

whereas a null value would be the best estimate. This over-
estimation is related to the speech spectrum of the previous
frame. The reverberation effect characteristic of the DD ap-
proach is explained by both underestimation and overestima-
tion of thea priori SNR features.

4.2 Comparison between a posteriori and a priori SNRs

It is interesting to underline the behavior of thea posteriori
anda priori SNR estimators. It is well known that using only
thea posteriori SNR to enhance the noisy speech results in a
very high amount of musical noise, leading to a poor signal
quality. However, this technique leads to the lowest degrada-
tion level for the speech components themselves. Thea pri-
ori SNR, estimated using the DD approach, is widely used
instead of thea posteriori SNR because the musical noise is
reduced to an acceptable level. However, this estimated SNR
is biased and then the performance is reduced during speech
activity.

In order to measure the performance of SNR estimators,
it is useful to compare the estimated SNR values to the true
(or local, cf. equations (5) and (6) with|N(p,k)|2 known)
ones as shown in Fig. 4. The SNRs are plotted for 50 frames
of speech activity to focus the analysis on the behavior of the
SNR estimators for speech components.
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Figure 4: Estimated SNRs versus true SNRs (i.e. local
SNRs) in case of (a)a posteriori SNR and (b)a priori SNR.
The bold line represents a perfect estimator and the thin line
represents the mean of the estimated SNR versus the true
SNR.

In the two cases depicted in Fig. 4.(a) (a posteriori SNR)
and Fig. 4.(b) (a priori SNR), the bold line corresponds to
a perfect SNR estimator (̂SNR = SNRlocal) that can be used
as a reference to evaluate the performance of the real esti-
mators. It is obvious that the features corresponding to thea
posteriori SNR estimator are closer to the reference bold line
and less dispersed than thea priori SNR estimator ones. The
thin line represents the mean of the estimated SNR knowing
the true SNR. This mean is closer to the perfect estimator
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for the a posteriori SNR estimator. It is slightly underesti-
mated for high SNR whereas for thea priori SNR the un-
derestimation (cf. equation (11)) is large for SNR greater
than−17dB. However, since the dispersion is high for the
a priori SNR features, even if the mean is largely underesti-
mated, the case where SNR features are overestimated exists
(cf. equation (13)). Finally, these results confirm that thea
posteriori SNR estimator is more reliable than thea priori
one for speech components.

5. RELIABLE SNR FEATURES SELECTION

Since thea posteriori SNR estimator is better for speech
components than thea priori SNR estimator of the DD ap-
proach, a judicious strategy would be to determine when it
is possible to use it and when it will lead to musical noise.
In order to select only the reliablea posteriori SNR compo-
nents, we propose to separate the SNR features in the space
defined by the 2-tuple( ˆSNRpost , ˆSNRprio) using two thresh-
olds. Given the thresholdη for the a priori SNR, it is pos-
sible to compute the thresholdδ for the a posteriori SNR
using (7) which depends on the phase parameterα(p,k). As
displayed in Fig. 5, these SNR features will be then sepa-
rated into four quadrants. By processing output signals using
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Figure 5: Separation of the features defined by the 2-tuple
( ˆSNRpost , ˆSNRprio) into 4 quadrants using 2 thresholds on

ˆSNRpost and ˆSNRprio.

the a posteriori SNR values of each quadrant, informal lis-
tening tests confirm that a classification can be made. Based
on these experiments, we propose to chooseη = −6dB for
the a priori SNR threshold, which leads toδ ≈ −6dB for
the a posteriori SNR threshold. In order to computeδ , we
choseα(p,k) = π in (7) because it corresponds to the small-
est resulting thresholdδ and then preserves SNR values cor-
responding to speech whatever the phase difference between
speech and noise is (cf. algorithm proposed in the following).
This choice is natural because we cannot estimate this phase
difference and consequently it leads to the less speech com-
ponent suppression. However, any other choice can be made
for α(p,k).

This particular choice is illustrated in Fig. 5. The two
thresholds separate the SNR features into four quadrants (two
in dark gray dots and two in light gray). The interest of this
separation is the possibility to classify the features intodiffer-
ent categories. The right dark gray features lead to high level
musical noise only and the ones in the two left quadrants lead
to very low and inaudible components that are consequently
useless. Finally, the right light gray features can be classified

as SNR components leading to speech only, without musical
noise. We can emphasize that a reliable classification is ob-
tained because the behaviors of thea posteriori anda priori
SNR estimators are complementary. Actually, thea poste-
riori SNR estimator is efficient for speech components but
poor for musical noise and thea priori SNR estimator of
the DD approach is efficient for musical noise but biased for
speech components. As a consequence, an efficient separa-
tion of the SNR features can be done in the space defined by
the 2-tuple( ˆSNRpost , ˆSNRprio).

Based on this classification, we propose to re-estimate the
a posteriori SNR using only the reliable features and to use it
to compute the spectral gain. This algorithm called RFSNR
(Reliable Features Selection Noise Reduction) is described
as follows
step 1: Thea posteriori anda priori SNRs are computed us-

ing relations (8) and (9), respectively.
step 2: Thea posteriori SNR is re-estimated as follows

ˆSNR
thr
post(p,k) =











ˆSNRpost(p,k) if ˆSNRpost(p,k) ≥ δ
and

ˆSNRprio(p,k) ≥ η ,
1 else,

(14)
wherethr indicates that thea posteriori SNR is processed
using thresholds.

step 3: This re-estimated and unbiased SNR,ˆSNR
thr
post(p,k),

is directly used to compute the spectral gain, the Wiener
filter [1] for example. This gain is then applied to the
noisy speech to obtain the enhanced signal. We can em-
phasize that thea priori SNR is used only to select the
reliablea posteriori SNR features, and will not be used
to compute the spectral gain as in [2] since it is biased.

step 4: Another spectral gain is computed based ona pos-
teriori anda priori SNRs of step 1 and will be used to
obtainŜ(p,k) needed in step 1 for the next frame. Actu-
ally, this is what is done in the classical DD approach.
Notice that the two right quadrants in Fig. 5 correspond to

the case where a threshold is applied only to thea posteriori
SNR values in a way close to the generalized spectral sub-
traction [5]. In that case, a threshold of 10dB is required to
suppress all the musical noise (dark gray features) but then
all the speech components corresponding to light gray dots
lying between−6 and 10dB (abscissa axis) are suppressed
too. Finally, using two thresholds (14) avoids this problem
and allows to preserve the features corresponding to speech
components while suppressing the musical noise.

6. RESULTS

In this section, the Wiener filter,cf. equation (10), is chosen
for the DD and RFSNR approaches. Figure 6 shows three
spectrograms. Figure 6.(a) represents the noisy speech cor-
rupted by car noise (SNR=12dB), Fig. 6.(b) shows the en-
hanced speech, free of musical noise, obtained with the RF-
SNR technique and Fig. 6.(c) represents the musical noise
successfully removed. This musical noise corresponds only
to the right dark gray and to the left features of Fig. 5 which
confirms that the proposed features selection based on equa-
tion (14) is powerful to remove it. Notice that this very high
level of musical noise is the one present in enhanced speech
using only unprocesseda posteriori SNR (8). Furthermore,
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Figure 6: Speech spectrograms. (a) Noisy speech; (b) Noisy
speech enhanced by RFSNR technique; (c) Musical noise
successfully removed using the RFSNR technique.

speech components are enhanced using reliablea posteriori
SNR estimates and thus do not suffer from the bias intro-
duced by the DD approach.

In order to generalize this result, the input SNRs of noisy
speech and the corresponding segmental SNR obtained for
DD and RFSNR techniques are presented in Table 1. Each
SNR value is a mean over 36 sentences (4 speakers, 2 fe-
males and 2 males, and 9 sentences per speaker). The seg-
mental SNR measure takes into account both residual noise
level and speech degradation. The proposed RFSNR tech-
nique achieves the best results (bold values) under all noise
and SNR conditions. Since speech components are enhanced
using only reliablea posteriori SNR estimates, they do not
suffer from the bias introduced by the DD approach which
explains the segmental SNR improvement. These remarks
are corroborated by informal listening tests. Actually, from a
subjective point of view, the annoying reverberation effect of
the DD approach is removed. However, some distorsions re-
mains, in particular when SNR is low, since the efficiency of
the SNR estimators depends on the quality of the noise PSD
estimation.

7. CONCLUSION

In this paper, we proposed and analyzed an SNR estima-
tor based on the selection of the most reliablea posteri-
ori SNR features. Thea posteriori SNR estimator is effi-
cient for speech components but leads to high level musical
noise. That is why the DD approach is preferred to com-
pute thea priori SNR which efficiently reduces the level
of musical noise. However, this estimator is biased for
speech components leading to degradation for the enhanced
speech and to an annoying reverberation effect. The comple-
mentary behaviors of these two estimators precisely allow
to classify the features in the space defined by the 2-tuple

Table 1: Segmental SNR obtained for DD and RFSNR in
various noise and SNR conditions.

Noise Input Segmental SNR (dB)
type SNR (dB) DD RFSNR

24 24.43 24.68
18 19.00 19.66

Office 12 13.59 14.56
6 8.39 9.46
0 3.90 4.74
24 23.32 24.00
18 18.07 18.92

Car 12 13.12 14.11
6 8.48 9.74
0 4.39 5.21
24 23.20 23.87
18 17.68 18.61

Street 12 12.41 13.45
6 7.41 8.41
0 3.03 3.70
24 24.08 24.69
18 18.13 19.11

Babble 12 12.50 13.48
6 7.35 8.13
0 3.16 3.53

( ˆSNRpost , ˆSNRprio) since reliable and unreliable features are
well separated. Finally, the enhanced speech is free of musi-
cal noise and does not suffer from the bias mentioned above
since only the reliablea posteriori SNR features are used to
compute the spectral gain. Consequently, the reverberation
effect characteristic of the DD approach is also removed.
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