14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

SUPPORT VECTOR MACHINES FOR CONTINUOUS SPEECH RECOGNITION

Jaume Padrell-Sendra', Dario Martl’n—lglesias2 and Fernando Diaz-de-Maria*

! Research Department
Applied Technologies on Language and Speech S.L (ATLAS)
jpadrell@verbio.com

2 Signal Theory and Communications Department
Universidad Carlos III de Madrid
{dmiglesias,fdiaz } @tsc.uc3m.es

ABSTRACT

Although Support Vector Machines (SVMs) have been proved
to be very powerful classifiers, they still have some problems
which make difficult their application to speech recognition,
and most of the tries to do it are combined HMM-SVM solu-
tions. In this paper we show a pure SVM-based continuous
speech recognizer, using the SVM to make decisions at frame-
level, and a Token Passing algorithm to obtain the chain of
recognized words. We consider a connected digit recogni-
tion task with both, digits themselves and number of digits,
unknown. The experimental results show that, although not
yet practical due to computational cost, such a system can get
better recognition rates than traditional HMM-based systems
(96.96% vs. 96.47%). To overcome computational problems,
some techniques as the Mega-GSVCs can be used in the fu-
ture.

1. INTRODUCTION

Hidden Markov Models (HMMs) are, undoubtedly, the most
employed core technique for Automatic Speech Recognition
(ASR). During the last decades, research in HMMs for ASR
has brought about significant advances and, consequently,
the HMMs are currently very accurately tuned for this ap-
plication. Nevertheless, we are still far from achieving high-
performance ASR systems.

Support Vector Machines (SVMs) are state-of-the-art
classifiers. SVMs solution relies on maximizing the distance
between the samples and the classification border. This dis-
tance is known as the margin and, by maximizing it, they
are able to generalize unseen patterns. This maximum mar-
gin solution allows the SVM to outperform most nonlinear
classifiers in the presence of noise, which is one of the long-
standing problems in ASR. Also, SVMs don’t have the con-
vergence and stability problems typical of other classifiers as
Neural Networks (NNs).

Nevertheless, the successful application of SVMs to the
ASR problem requires solving three main problems. First,
the variable time duration of each utterance. Second, neither
the time position of each word or the number of words to be
sought in the utterance are known. The last big problem is
related to the size of the databases used in speech recogni-
tion, which are huge compared to the maximum number of
train patterns that an SVM can deal with.

Previous works ([1] is a good example) have tried to over-
come the problem of alignment using an HMM for this task,

This work has been partially sponsored by the Regional and Spanish
Government under grants GR/SAL/0472/2004 and TIC2002-02025.

prior to classification. With this approach, however, effi-
ciency of SVMs is limited by the errors in the segmentation
stage. Other works cope with the variable time duration of
the utterances embedding either, an HMM [2], or a Dynamic
Time Warping algorithm [3], in the kernel of the SVM. It is
not easy, however, to apply these last techniques to the prob-
lem of continuous speech because a previous segmentation
in words of the utterance would be required.

Our solution to the SVM problems mentioned before
consists in classifying each minimum unit of 25ms of voice
(frame) as a basic class, a phone segment. With this approach
we avoid the need to know where the words are and their time
durations become unimportant. To go from the classification
of each frame to the word chain recognition we use the same
Viterbi algorithm that is used for continuous speech recog-
nition with Hidden Markov Models (HMMs). A similar ap-
proach is taken in [4], but in that case using Neural Networks
(NNG5) to classify frames and to obtain their probabilities. In
our case, we expect to take advantage of the robustness and
higher discriminative capabilities of SVMs to get better re-
sults.

This paper is structured as follow. In the first part, sec-
tions 2 and 3, we introduce and briefly discuss our solution
to the SVM problems in the context of continuous speech
recognition. In the second part, section 4, we describe the
experiments carried out. Finally, we conclude with a discus-
sion in section 5.

2. CLASSIFYING EACH FRAME AS A PHONE

As we mention in the introduction we suggest applying an
SVM on every frame of the speech utterance in order to de-
termine which class the frame belongs to. For this purpose,
we have as many classes as phones. In particular, for Spanish
digits we can define 17 phones plus the silence. In summary,
with our multiclass SVM system we will classify every indi-
vidual voice frame as belonging to one of the 18 classes or
phones.

2.1 Training with SVMs

There are several ways to carry out a multiclass SVM classi-
fication. In the current work we use the “one-against-one”
method [5]. This method allows us to train all the sys-
tem, with a maximum number of different samples for each
class, with a limited computer memory. For 18 classes, this

method implies to train and use w =153 SVMs, where
each SVM classifies each frame between two of the possible



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

phones, deciding the winning class by voting.

The number of training samples that the system is able
to use becomes a practical problem for the SVM system, for
both training and testing. In the training process, all the Ker-
nels (or a high percentage of them) should be allocated in the
computer memory. This fact limits the number of training
samples in function of the available memory. A large train-
ing set also implies a high computational cost from the clas-
sification (test) point of view, since the number of Support
Vectors (SV) increases linearly with the number of training
samples.

The LIBSVM software [6] is used to train the SVMs. We
use this package for two reasons. First, it implements the
SMO algorithm [7] that allows a fast SVM training and with
a fairly high number of samples. And second, it provides
an estimated probability value for each frame and candidate
phone.

2.2 Recognition with SVMs

In order to perform the recognition, we built a matrix of
probabilities: one row per class (phone) and one column per
frame. To obtain the chain of recognized words from this
probability matrix, we use the Token Passing Model algo-
rithm [8].

The Token Passing Model is an extension of the Viterbi
algorithm typically used in continuous speech recognition
to manage the uncertainty about the number of words in a
sentence. Figure 1 illustrates the use of this algorithm for a
very simple grammar which allows any concatenation of two
Spanish words: “uno” and “tres”. Classes are represented
by circles, while word-ends are represented by squares. Two
columns of circles are shown corresponding to two consec-
utive frames, i and j. The possible transitions allowed by
the task grammar and explored by the Viterbi algorithm are
represented either by solid or dashed lines (the mean of the
line types is explained later). Each circle and transition could
have an associate cost or probability. Every Viterbi node (cir-
cle) has an associated structure called Token. Each token
stores the accumulated cost of reaching the corresponding
node.

The Token not only stores the accumulated cost but also
a Link to the last recognized word. The Link is only modi-
fied when the algorithm passes through word-ends (squares
in Figure 1). The transitions among classes that modify this
Link are represented by solid-lines, while those that do not
modify it are represented by dashed-lines. Proceeding as
usually in the Viterbi algorithm, only the path leading to the
highest probability for every node is kept.

When the Viterbi algorithm has explored all the frames,
the Token with a higher accumulated probability is chosen
and its Link to the (sequence of) word-ends provides us the
sequence of recognized words.

3. CLASSIFYING EACH FRAME AS A PART OF A
PHONE

The definition of classes previously described can be clearly
improved, since it does not take into account the time varia-
tion typically exhibited by actual phones. Some time varia-
tion can be embedded through the delta parameters (see 4.2),
but better solutions should be investigated. Specifically, we
have considered two alternatives: either extending the time-
window covered by the parameterization (for example, con-

SVM Classes Topology

Token
| Accumulated Prob.

State Prob.’o’
+

Tr.Prob.'uno’-'tres’

Link Last Word

=
>
o

Frames (time
| MFCCs Stream

Figure 1: An illustration of the Token Passing Algorithm for
a very simple grammar.

sidering for each time instant the concatenation of two or
three consecutive features vectors), or changing the defini-
tion of classes considered in the SVM-based classification
stage to deal with parts of phones.

The last alternative have been chosen because it helps us
to deal with another SVM-related problem: the practical lim-
itation of the number of samples for training a single SVM.
Increasing the number of classes and maintaining constant
the number of samples used to train each SVM, we effec-
tively increase the total number of samples used to train the
whole system.

The natural choice consists in defining a class for the be-
ginning of the phone, a class for the center of the phone, and
finally, a class for the end of the phone. This new approach
transforms our 18 initial classes into 18 -3 = 54. In terms of
the number of SVM classifiers to perform the “one-against-
one” multiclass implementation, we move from 153 to 1431
SVMs.

If we use these new classes, an allowed-transition matrix
should be included to actually constrain the class transitions
allowed during the Viterbi-based exploration. Furthermore
a “probability transition matrix” can be used instead of the
previously defined “allowed-transition matrix”. The transi-
tion probabilities, a;;, can be estimated from the number of
transitions from i to j, occurring when considering the sam-
ples in the available training set.

4. EXPERIMENTS
4.1 Database

In our experimentes we have used the subset of SpeechDat
[9] containing utterances of connected digits. For this work,
it has been segmented in triphones by means of an HMM-
based forced alignment. From this segmentation, we obtain
the locations of the phones or their three states.

SpeechDat is a telephone-speech database that includes
3496 different speakers for training (71000 files, approxi-



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

[ #Files [ #Frames | % Accuracy ]

100 47666 82.77[82.24,83.29]
200 98695 91.15[90.75,91.54]
300 156530 | 93.18[92.82,93.52]
400 204764 | 93.88[93.54,94.21]
500 255638 | 94.34[94.01,94.65]

Table 1: Baseline results achieved by the HMM-based sys-
tem in terms of word recognition accuracy, for training sets
consisting of 100 to 500 files. Confidence intervals are shown
in brackets.

mately 100 hours of voice). For test, other 350 speakers are
available (for the case of connected digits, the test set con-
sists of 2122 files and 19855 digits). The recorded contents
are varied, including phrases, digits, commands, hours, etc.

4.2 Parameterization

The voice parameterization that we have used is based on
12 Mel Frequency Cepstral Coefficients (MFCCs) plus the
energy, and their first and second derivatives, known usually
as the delta parameters. These MFCC are computed every
10ms over time windows of 25ms. Thus, the resulting feature
vectors have 39 components. Each parameterization file is
normalized in mean and variance according to the following
expression:

Syl = T K (1)

o;+6 ’
where x;[n] represents the i component of the feature vector
corresponding to frame n, l; is the estimated mean from the
whole file, o; is the estimated variance, and 0 is a constant
just to avoid numerical problems (for our experiments, we
have chosen 6 = 10).

4.3 Baseline experiment with HMMs

We use the recognition rate achieved by an HMM-based
recognition system as a reference result. We use three-state
phone models with 16 Gaussians per state.

Due to the practical limitation with respect to the number
of training samples that the SVM software is able to manage,
and for comparisons purposes, we have used in both cases
(HMM- and SVM-based recognition systems) only a small
part of the available training data, between 100 and 500 files
of the 71000 available.

Table 1 shows the results achieved by the HMM-based
system. As it can be observed, using only 100 files for
training, that is the 0.14% of the available data, the HMM-
based system reaches a digit recognition accuracy of 82.77%.
These 100 files come only from the 4 first speakers of the
3496 available. Evidently, as the number of files for training
increases, the recognition accuracy improves.

4.4 Experiments with SVMs
An SVM computes the following formula:

N
g(¥) =Y Aiyik(X5, %) +b 2)
i=1

where X denotes the input vector, x'; are the support vec-
tors, y; are classification labels, A; are coefficients of the lin-
ear combination, b is a bias term, and K (7,-, 7) is the kernel
function.

The most widely used kernel function is the Gaussian Ra-
dial Basis Function (Gaussian RBF), that is the one we have
chosen for our experiments:

- — ||?i_?j||2
k(x,-,xj):exp —? . 3)

Given this type of kernel, a value for the o parameter
should be selected in advance. Besides, for training, we have
to choose a value for a parameter C, which establishes a com-
promise between error minimization and generalization ca-
pability. We have selected both parameters by Cross Vali-
dation using only a small part of the training database for
several values of o and C. In particular, we use C = 256 and
o = 0.007812 for all the experiments.

Table 2 shows results for three types of experiments. The
first one (denoted as F1C) consists of using phones as SVM
classes, the second one (F3C) uses three classes per phone
and an allowed-transition matrix, and the third one (F3CMT)
uses three classes per phone and a probability transition ma-
trix.

Even when we use the smallest subset of the available
files for training, i.e., 100 files, the number of frames avail-
able for training (47666 frames, see Table 1) is hard to be
managed by the SVM software and conventional computa-
tional resources. In order to reduce both the training and
classifying time, some maximum thresholds for the number
of samples (frames) per class have been set up. Thus, a num-
ber of samples equal or less than the threshold are taken ran-
domly from the database for each class. It is not always equal
because the phonemes are not balanced in the speech, and
therefore the classes will not be perfectly balanced. However,
most of our experiments are approximately balanced due to
the great amount of available speech samples with respect to
the used thresholds.

Table 2 shows how the accuracy depends on the threshold
value. To gain some insight on the threshold-based sample
selection process, we analyzed which are the samples that
are randomly taken out of the training set, concluding that
for 100 files and a threshold of 3000 samples per class (that
means using only 22532 samples out of the 47666 available)
the most of the eliminated samples belonged to silences and
a few of them to some vowels. Furthermore, it is interesting
to notice that similar accuracies are achieved for threshold
values of 3000 and 1500 (73.99% and 74.01%, respectively).
However, when we identify class with phone, SVMs do not
reach the HMMs results.

The results corresponding to the second experiment
(F3C) are also shown in Table 2. In this experiment we have
used a threshold of 1000 samples for each class, what ap-
proximately gives the same number of training samples than
using a threshold of 3000 and one class per phone. With
this new class structure, the recognition accuracy clearly im-
proves: from 73.99% to 85.15%. This last result is already
better than that achieved by the HMMs for the same number
of training files.

The third experiment (F3CMT) also achieves to improve
the accuracy with respect to the second one, from 85.15% to
87.13% (see Table 2). This result compares very favorably
with that achieved by HMMs for the same number of training
files: 87.13% (SVMs) vs. 82.77% (HMMs).

Finally, Table 3 shows the word recognition accu-
racy when we train with the whole database, 71000 files



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

[ #Files | Threshold [ #Frames | #SV [ % Accuracy |
One Class per Phone (F1C)

74.01

100 1500 16275 12449 [73.40.74.62]
73.99

3000 22532 16825 [73.38.74.60]
500 1500 27247 21436 86.67

[86.19,87.14]

Three Classes per Phone (F3C)
100 1000 20857 18005

85.15
[84.65,85.64]

Three Classes per Phone with MT (F3CMT)

87.13
100 1000 20857 | 18005 | 146 66 87.59]

Table 2: Three different SVM-based systems. Confidence
intervals are shown in brackets.

# Frames #SV % Accuracy CPU Time
(hours)
HMM
>35e+07 [ @ [ 96.47[96.21,96.72] | 0.35
F3CMT

13500 12156 | 93.53[93.18,93.87] 15
27000 23606 | 94.89[94.58,95.19] 36
54000 46111 | 95.69[95.40,95.97] 71
108000 90007 | 96.22[95.95,96.48] 141
540000 431512 | 96.96 [96.72,97.19] 464

Table 3: Recognition using all files available in the training
database. The CPU time, in hours, consumed for every test
is also provided.

(>3.5e+07 frames). For the SVM case, we always take the
same number of frames per class, and we use different thresh-
olds, increasing the total number of frames used. The differ-
ence with respect to the results shown in Table 2 is that now
the selected samples for training are taken (randomly) from
any file of the whole database. In all these experiments we
use three classes per phone and a probability transition ma-
trix. Looking at this results, we see that finally the SVMs
reach better performance than HMMs (96.96% vs. 96.47%),
and it should be noticed that the SVMs are trained using only
1.5% of the available data.

Table 3 also gives the CPU time consumed by each test.
As it can be observed, the computation effort is extremely
high in the case of SVMs. This is mainly due to the high
number of support vectors (column labeled as #SV in Tables
2 and 3) even when we limit the number of training samples.
We can also see that the number of support vectors grows
linearly with the number of training samples used.

5. CONCLUSIONS

The results of this work allow us to conclude that the SVMs
ca be an alternative to the HMMs in continuous speech
recognition. With a very small database, 100 utterances, the
SVMs improves the recognition accuracy of HMMs, and we
also get a similar behavior with a large database (100 hours),
although at the expense of a huge computational effort.

This last result is very interesting if we keep in mind that,
due to current limitations, the SVM-based system only has

used the 1.5% of the training database used by HMM-based
one. We guess that a better selection of training samples (cur-
rently this selection is made randomly) for SVMs would lead
to a substantial improvement.

We are trying to overcome the current limitations of our
systems due to the reduced training sets that can be used.
Mega-GSVCs [10] are capable of training classifiers with
millions of data while keeping under control the complexity
of the resulting machines. Using this kind of techniques, and
as a preliminary result, we have reduced spectacularly the
number of Support Vectors, moving from 46111 to 74, whilst
recognition rate decreased only from 95.69% to 94.9%. With
these numbers, we can expect to reduce the computation
times until acceptable levels.

Another way to increase the number of frames that we
can use in training is, as we have shown, increasing the num-
ber of classes considered. In this sense, we could define
classes for different phonetic contexts.

Finally, in order to reduce the CPU time consumed in
classification, a technique like FC-GSVC [11] or some type
of Viterbi pruning could be used.

REFERENCES

[1]1 A. Ganapathiraju, J. Hmaker, and J. Picone, “Hybrid
SVM/HMM architectures for speech recognition,” in
Proc. of the International Conference on Spoken Lan-
guage Processing, 2000, vol. 4, pp. 504-507.

[2] N. Smith and M. Gales, “Speech recognition using
SVMs,” Advances in Neural Information Processing
Systems 14. MIT Press, 2002.

[3] H. Shimodaira, K. Noma, M. Nakai, and S. Sagayama,
“Support vector machine with dynamic time-alignment
kernel for speech recognition,” in Proc. of the Eu-
rospeech, 2001, pp. 1841-1844.

[4] Piero Cosi, “Hybrid HMM-NN architectures for con-
nected digit recognition,” in Proc. of the International
Joint Conference on Neural Networks, 2000, vol. 5.

[51 V. N. Vapnik, The Nature of Statistical Learning The-
ory, Springer Verlag, New York, 1995.

[6] C. C. Chang and C. J. Lin, LIBSVM: A Library for
Support Vector Machines, 2001, Software available at
http://www.csie.ntu.edu.tw/cjlin/~libsvm.

[7] J. C. Platt, Advances in Kernel Methods: Support Vec-
tor Learning, chapter Fast Training of Support Vector
Machines Using Sequential Minimal Optimization, pp.
185-208, MIT Press, 1999.

[8] S. J. Young, N. H. Russell, and J. H. S. Thornton,
“Token Passing: a Conceptual Model for Connected
Speech Recognition Systems,” Tech. Rep., CUED
Cambridge University, 1989.

[9] A. Moreno, “SpeechDat Spanish Database for Fixed
Telephone Network,” Tech. Rep., Technical University
of Catalonia, 1997.

[10] D. Gutiérrez, E. Parrado, and A. Navia, “Mega-GSVC:
Training SVMs with Millions of Data,” in Proc. of the
Learning’04 International Conference, 2004.

[11] E. Parrado, J. Arenas, I. Mora, A. Figueiras, and
A. Navia, “Growing Support Vector Classifiers with
Controlled Complexity,” Pattern Recognition, vol. 36,
2003.



