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ABSTRACT
The problem of locating mobile terminals has recently re-
ceived considerable attention particularly in the field of wire-
less communications. In this paper, a simple signal subspace
based algorithm is devised for mobile positioning with the
use of time-of-arrival (TOA) measurements received at three
or more reference base stations. Computer simulations are
included to contrast the estimator performance with Cramér-
Rao lower bound and computationally attractive TOA-based
localization methods in the literature.

1. INTRODUCTION

Mobile terminal (MT) positioning has been receiving consid-
erable interest, especially after the Federal Communications
Commission in the United States has adopted rules to im-
prove the Emergency 911 (E-911) services by mandating the
accuracy of locating a E-911 caller to be within a specified
range, even for a wireless phone user [1]. Apart from emer-
gency assistance, mobile position information is also the key
enabler for a large number of innovative applications such as
personal localization and monitoring, fleet management, as-
set tracking, travel services, location-based advertising and
billing [2].

Common positioning approaches [3] are based on time-
of-arrival (TOA), received signal strength, time-difference-
of-arrival and/or angle-of-arrival measurements determined
from the MT signal received at several reference base sta-
tions (BSs) with known locations. In this paper, we focus
on two-dimensional MT localization given the TOA infor-
mation. In the TOA method, the one-way propagation time
of the signal travelling between the MT and each of the BSs
is measured. Each TOA measurement then provides a circle
centered at the BS on which the MT must lie. With three
or more BSs, the measurements are converted into a set of
circular equations, from which the MT position can be deter-
mined with the knowledge of the BS geometry.

The optimum TOA-based localization approach involves
solving the nonlinear circular equations in an iterative man-
ner and commonly used techniques [4]-[7] include lineariza-
tion via Taylor-series expansion, steepest descent method
and Newton-type iteration. However, this approach is com-
putationally intensive and sufficiently precise initial esti-
mates are required to obtain the global solution. On the other
hand, computationally efficient but suboptimum position es-
timators which allow real-time realization as well as ensure
global convergence, have also been proposed in the literature
[8]-[12]. In the least squares calibration method [8], the non-
linear equations are reorganized into a set of linear equations
via introduction of an extra variable which is a function of the
source position, and these linear equations are then solved
straightforwardly by using least squares (LS). Alternatively,

the common variable in the linear equations can be elimi-
nated via subtraction of each equation from all others, and
this technique is referred to as the linear least squares esti-
mator [9]. Based on a new geometrical formulation, Caffery
has proposed the straight lines of position (SLOP) method
[10] where a different set of linear equations is constructed.
Instead of forming linear equations, computationally sim-
ple positioning algorithms [11]-[12] have also been derived
using the squared TOA measurements or equivalently the
squared distance measurements. In [11], modified multidi-
mensional scaling (MDS) is utilized while a noise subspace
based algorithm with a linear constraint for 3-BS case is pro-
posed in [12] but only 3 MTs can be dealt with. In this paper
we will devise a signal subspace based localization approach
which allows any number of BSs and thus can be treated as
a generalization of [12].

The rest of the paper is organized as follows. The devel-
opment of the signal subspace localization algorithm is pre-
sented in Section 2. Simulation results are included in Sec-
tion 3 to evaluate the estimator performance of the proposed
position estimator. Finally, conclusions and future works are
provided in Section 4.

2. ALGORITHM DEVELOPMENT

Let (x0,y0) be the MT position to be determined and the
known coordinates of the ith BS be (xi,yi), i = 1, · · · ,M
where M ≥ 3 is the total number of receiving BSs. The dis-
tance between the ith BS and jth BS, which is denoted by
di, j, is given by

di, j =
√

(xi− x j)
2 +(yi− y j)

2 i, j = 1, · · · ,M (1)

Similarly, the distance between the MT and the ith BS is de-
fined as

d0,i = di,0 =
√

(x0− xi)
2 +(y0− yi)

2 i = 1, · · · ,M (2)

Since TOA is the one-way propagation time taken for the
signal to travel from the MT to a BS, we have the following
relationship:

ti =
di

c
, i = 1, · · · ,M (3)

where ti denotes the noise-free TOA at the ith BS and c is
the speed of light. The range measurement based on ti, in the
presence of measurement errors, denoted by r0,i, is modeled
as

r0,i = d0,i +n0,i +U (α− p)q0,i i = 1, · · · ,M (4)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



where the second and the third components represent the
line-of-sight (LOS) error and possible non-line-of-sight
(NLOS) error, respectively. The n0i ∼ N

(
0,σ2

0i
)

where
N (µµµ,Γ) means the Gaussian distribution with mean µµµ and
covariance Γ. The q0,i ∼ U(0,R), R is the maximum NLOS
distance, p∼ U(0,1) ,α ∈ [0,1] is the probability of obtain-
ing NLOS distance measurement, U(a,b) stands for the uni-
form distribution with a and b respectively the starting and
ending points and U (p) denotes the unit step function. De-
fine a M×2 matrix X of the form:

X = [ x−1Mx0 y−1My0 ] (5)

where x = [ x1 · · · xM ]T , y = [ y1 · · · yM ]T and
1M is a M× 1 vector with all elements equal 1. We further
define D = XXT which is a rank-2 symmetric matrix and its
(m,n) entry is given by

[D]m,n = 0.5(d2
0m +d2

0n−d2
mn) (6)

where dmn = dnm is of known value. We notice that the diag-
onal elements of D are

[D]m,m = d2
0m, m = 1,2, · · · ,M

Although D is unknown, we are able to construct its approx-
imate version at sufficiently small noise conditions, denoted
by D̂, with the use of the noisy {r0m} and noise-free {dmn}.
Apparently, the (m,n) entry of D̂ is

[D̂]m,n = 0.5(r2
0m + r2

0n−d2
mn) (7)

Decomposing the symmetric D̂ by eigenvalue factorization
yields

D̂ = UsΛsUT
s +UnΛnUT

n (8)

where Λs = diag(λ1,λ2) and Λn = diag(λ3, · · · ,λM) are the
diagonal matrices of eigenvalues of D̂ with λ1 ≥ λ2 ≥ ·· · ≥
λM ≥ 0, Us = [u1 u2] and Un = [u3 · · · uM] are orthonormal
matrices whose columns are the corresponding eigenvectors.
Since the rank of the ideal D is 2, an LS estimate of X up to
a rotation, denoted by X̂r, can be computed as [11]:

X̂r = argmin
X
||D̂−XXT ||2F

= UsΛ
1
2
s (9)

where || ||F represents the Frobenius norm, and Λ
1
2
2 =

diag(λ
1
2

1 ,λ
1
2

2 ). The relationship between X̂r and X is then:

X≈ X̂rΩ (10)

where Ω is an unknown rotation matrix to be determined.
From (10), an optimal estimate of Ω in the LS sense is easily
shown to be

Ω̂ = (X̂r T X̂r)−1X̂r T X

= Λ
− 1

2
s UT

s X (11)

Substituting (11) into (10), we have

X≈TX (12)

where T = X̂r(X̂r T X̂r)−1X̂r T = UsUT
s . From (5) and

(12), we can construct two sets of linear equations in x0 and
y0, respectively:

x−1Mx0 ≈T(x−1Mx0) (13)

and

y−1My0 ≈T(y−1Mx0) (14)

In this study, we propose to use the standard LS technique to
solve the overdetermined system of (13) and (14) which can
be grouped together as

(IM−T) [ x y ] ≈ (IM−T)1M [ x0 y0 ] (15)

The LS estimate is easily shown to be

[ x0 y0 ] ≈ ((IM−T)1M)† (IM−T) [ x y ]

=
1T

MUnUT
n

1T
MUnUT

n 1M
[ x y ] (16)

where A† denotes the pseudo-inverse of A and note that
UT

n Un = IM−2 and IM −T = UnUT
n . In particular, when

there are only 3 BSs, Un = u3, (16) can be simplified to

[ x0 y0 ] =
uT

3

uT
3 1M

[ x y ] (17)

which is exactly the solution given by [12]. It is noteworthy
that unlike [12] which utilizes the noise subspace component
subject to a linear constraint, we work on the signal subspace.
The proposed method generalizes the method given by [12]
in the sense that any number of BSs is allowed as long as
M ≥ 3 while the latter only operates for M = 3.

3. NUMERICAL EXAMPLES

Computer simulation had been conducted to evaluate the per-
formance of the proposed TOA-based positioning approach.
We compared the mean square position errors (MSPEs) of
the signal subspace estimator with the modified MDS [11],
the SLOP method [10] as well as the Cramér-Rao lower
bound (CRLB) [11] in MT localization. The LOS range er-
rors {ni j} were zero-mean white Gaussian processes with
variance d2

i, j/SNR where SNR is the signal-to-noise ratio.
All results were averages of 10000 independent runs.

In the first scenario, all the distance measurements
were considered as LOS paths and thus α = 0. The
position of the MT in each run was uniformly dis-
tributed within the circle with origin (0,0)m and ra-
dius 3000m. We started with 3 BSs with coordinates
(0,0)m, (0,6000)m and (6000,6000)m. The BSs with
coordinates (6000,0)m, (6000,−6000)m, (−6000,0)m,
(−6000,−6000)m, (−6000,0)m and (−6000,6000)m were
then added successively. Figure 1 shows the MSPEs ver-
sus number of BSs when the range error variance was kept
at 30 dB. It is seen that the proposed algorithm had simi-
lar MSPEs with the modified MDS but it outperformed the
SLOP method for 3 ≤ M ≤ 6 and all had comparable per-
formance for 7 ≤ M ≤ 9. Figure 2 shows the MSPEs ver-
sus SNR when M = 6 with the BS geometry equalled to the
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previous test. We observe that the MSPEs of the proposed
method were more or less the same as the modified MDS but
were smaller than those of the SLOP method and decreased
with the CRLB.

In the second scenario, the effects of NLOS were investi-
gated. The parameters α and R of the signal model (4) were
set to 0.1 and 100 respectively while the other settings were
the same as the first scenario. It can be seen from Figure 3
that the proposed method performed better than the modified
MDS and SLOP methods when M ≤ 7 except the modified
MDS had the best performance at M = 5. When 8≤M ≤ 9,
the SLOP method outperformed the proposed method by
about 0.5 dB. From Figure 4, we see that the MSPEs of the
proposed method were comparable to those of the modified
MDS method but less than those of the SLOP method in all
SNR. It indicates that the proposed method has superiority
over the SLOP method when there are NLOS distance mea-
surements.

Finally, the computational complexity of all methods was
compared in a computer with Pentium 4 3.0G Hz CPU and
512MB RAM. The simulation settings were the same as the
first scenario. For each number of BS, all methods were run
10000 time and the average was plotted. It is shown from
Figure 5 that the computational requirement of the proposed
method was less than that of the modified MDS and SLOP
methods, especially when M was large. It demonstrates that
the proposed method is more computationally attractive.

4. CONCLUSIONS AND FUTURE WORKS

A novel signal subspace based approach has been devised for
mobile terminal (MT) localization using distance measure-
ments. It can be observed from the simulation results that the
subspace method can attain suboptimum performance in both
scenarios and performs well especially when the number of
BSs is small and the SNR is high, even in NLOS scenarios.
Furthermore, the proposed method is computationally sim-
ple and thus is suitable for environments in which processing
time is critical.

One of our future works is to improve the estimation per-
formance of the proposed technique. This can be achieved
by only changing the values of r0,i but keeping the values of
di, j unaltered in the rank reduction process, or finding a bet-
ter estimate of X from D̂ via introduction of an appropriate
weighting matrix. On the other hand, it is expected that the
process of finding Us can be speeded up by utilizing fast al-
gorithms in the scientific computing literature. It is also a
challenging task to derive the theoretical performance of the
subspace method.
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Figure 1: Mean square position error versus number of BSs
at LOS environment
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Figure 2: Mean square position error versus SNR at LOS
environment
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Figure 3: Mean square position error versus number of BSs
at NLOS environment
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Figure 4: Mean square position error versus SNR at NLOS
environment
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Figure 5: Average computational time
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