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ABSTRACT

In this paper, a new paradigm for voice activity detection
(VAD) is introduced. The idea is to exploit the spectral na-
ture of speech to make independent voice activity decisions
in separate sub-bands, resulting in multiple decisions for any
frame. A potential method to perform multi-decision sub-
band VAD is proposed then evaluated with a small test set.
The evaluations illustrate the concept and potential benefit of
multi-decision sub-band VAD.

1. INTRODUCTION

Voice activity detection (VAD) is a topic of significant prac-
tical importance. The applications for VAD techniques are
diverse and far reaching from power saving in mobile de-
vices to estimation of noise and speech statistics in speech
enhancement schemes [1]. Here we introduce the concept of
multi-decision sub-band VAD and propose a multi-decision
sub-band VAD scheme.

Traditionally, VAD schemes operate by partitioning a
set of sampled data into small periods (frames), typically
in the order of 20ms. Over this period speech can be con-
sidered short-term stationary, and often the frames over-
lap. The frames are then analyzed to determine the pres-
ence of speech, and each frame is classified ‘speech-active’
or ‘speech-inactive’. Therefore for any sequence withN
frames, there will beN speech activity decisions, one for
each frame.

This full-band definition of VAD fails to exploit the spec-
tral nature of speech. For example, a spoken phoneme will
often not encompass all frequencies simultaneously. Upon
examining the spectral content of phonemes it becomes ob-
vious that often speech is not present in all frequency bands
at a given time, i.e. a given frame may be ‘speech-active’
however not all frequency bands are ‘speech-active’. Here
we introduce the concept of a multi-decision sub-band voice
activity detector.

A multi-decision sub-band voice activity detector makes
an independent speech activity decision for each sub-band.
Therefore for any sequence withN frames, there will beN ·
K decisions, whereK is the number of sub-bands, i.e.K
decisions per frame.

This extension to the traditional definition of VAD is es-
pecially useful in speech enhancement schemes. Usually
speech enhancement schemes such as spectral subtraction
[2] heavily depend on voice activity detectors. Enhancement
schemes utilize VAD to estimate noise statistics by excluding
periods of speech activity from noise statistics updates. Use

of a multi-decision sub-band voice activity detector allows
such schemes to track noise variations during speech peri-
ods, in non-active sub-bands. This results in better estimates
of noise statistics and increased performance of speech en-
hancement algorithms. This action is similar to that of mini-
mum statistics [3], however this is more explicit.

Several recently proposed VAD structures lend them-
selves easily to multi-decision sub-band VAD. For instance
[4], [5] and [6] are all capable of making independent de-
cisions in separate sub-bands, however currently sub-band
decisions are collapsed into a traditional full-band decision.
Here we propose a scheme that is based around the core
mechanism in [6]. The proposed scheme utilises an over-
sampled polyphase filter bank [7] to decompose the full-band
signal into multiple sub-band signals. Each individual sub-
band signal is then independently tested for speech activity,
with an individual decision for each sub-band being the final
result.

2. PROPOSED STRUCTURE

The proposed structure utilizes a polyphase over-sampled fil-
ter bank [7]. The design of the filter bank directly influences
the characteristics of the VAD scheme. Here we use aK
band filter bank that decimates by a factor ofK

2 to perform
the sub-band decomposition.

Figure 1 illustrates the proposed structure. Initially, the
full-rate time domain datax(n) is decomposed into sub-bands
and decimated. A new sample indexm is used to represent
the reduced rate. The resulting reduced rate complex sub-
band signalxk(m) in thekth sub-band is then analyzed by a
decision device (DD).

The decision device analyzes each sub-band indepen-
dently to produce an initial decision of speech activity. The
result is a boolean outputDk(l) for each sub-bandk. The
decision device does this by framing the complex sub-band
signal and analyzing the frequency content, hence the new
index l .

Finally, the initial speech activity decision,Dk(l) is an-
alyzed by further logic to reduce false-alarms. The deci-
sion analysis modifies the initial decisionsDk(l) to rule out
unlikely scenarios, and outputs a final boolean decision in
thekth sub-bandVk(l). The set ofK sub-band speech activ-
ity decisions,{V0(l),V1(l), ...,VK−1(l)} form the set of final
speech activity decisions for thel th frame.
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Figure 1:Proposed Subband VAD structure

3. FILTER BANK

In order to decompose the full-band signalx(n) into K sub-
bands, a polyphase filter bank is utilized [7]. Such a structure
uses a single low-pass prototype filter and a modulator to
generate a set of sub-band filters. The filters all have the same
characteristics as the low-pass prototype filter. This process
may be done extremely efficiently through the use of an FFT
algorithm coupled with the polyphase representation.

In this implementation a 64 sub-band polyphase filter
bank was used. The prototype filter was designed using the
windowing method with a normalized cut-off frequency of
2π
K = 2π

64 . In order to reduce in-band aliasing, the sub-bands
were over sampled by a factor of 2, i.e. each sub-band signal
is decimated by a factor ofK2 . The number of coefficients in
the prototype filter was 256.

The polyphase filter bank used in this implementation is
not the only possible method. An overlapping FFT filter bank
[8] can also be used with success, however it is important to
determine the amount of delay that can be tolerated, along
with the desired sub-band characteristics.

4. DECISION DEVICE

As earlier introduced in section 2, a decision device is used
to determine the presence of speech activity in each sub-band
independently. The decision device utilises the core statisti-
cal mechanism in [6] to make a preliminary speech activity
decision in each sub-band. As a summary, the decision de-
vice essentially treats each sub-bandk as a separate band-
limited signal that can be tested for speech activity.

The decision device operates by framing a sub-band sig-
nal xk(m) into frames of lengthL, then analyzing the fre-
quency content of the particular frame. In this implementa-
tion, the frames were chosen to overlap 50%. The length of
the frame wasL = 8 sub-band samples and the overlap was
thus 4 sub-band samples.

We model thekth framed noisy sub-band speech signal
as,

xk(m, l) = sk(m, l)+vk(m, l), (1)

wheresk(m, l) is the framed sub-band clean speech signal
and similarlyvk(m, l) is the framed sub-band noise signal in
thekth sub-band andl th frame. It is assumed the speech and
noise are uncorrelated.

We define a signal to noise ratio (SNR) measure as,

ψk( f , l) =
Pxx,k( f , l)
P̂vv,k( f )

−1, (2)

wherePxx,k( f , l) is the power spectral density (PSD) ofl th

frame in thef th frequency bin of the noisy sub-band speech
signalxk(m, l). P̂vv,k( f ) is the expected noise PSD in thef th

frequency bin andkth sub-band. For clarity, the term fre-
quency bin consistently doesnot refer to a sub-band. Here
we are analyzing the spectral content of the sub-band signal
xk(m).

The PSD is estimated using the Welch method of over-
lapping windows. This was implemented by averaging over
adjacent frames. The expected noise PSD is estimated during
an initial silence period, where it is assumed that there is no
speech present.

As per [6], the detection mechanism is a statistical mech-
anism that considers two distinct hypotheses,

H0 : ψk( f , l) =
Pvv,k( f , l)

P̂vv( f )
−1,

H1 : ψk( f , l) =
Pvv,k( f , l)+Pss,k( f , l)

P̂vv( f )
−1,

whereH0 represents that null hypothesis that no speech is
present andH1 represents the alternative hypothesis that
speech is present.Pvv,k( f , l) represents the PSD of the noise
in the l th frame in thekth sub-band andf th frequency bin,
similarly Pss,k( f , l) represents the PSD of the speech. In or-
der to determine between speech activity and non-speech ac-
tivity, we wish to determine which hypothesis is more likely
for each frame and sub-band.

We assume during non-speech periods that the distribu-
tion of the SNR measure is Gaussian [6]. We thus model the
pdf of the SNR measure during non-speech periods as,

p(ψk( f , l)|H0) =
1√

2πσ2
v,k( f )

exp

(
−ψ2

k ( f , l)
2σ2

v,k( f )

)
, (3)

whereσ2
v,k( f ) is the variance of the SNR measure during pe-

riods of non-speech activity in thef th frequency bin andkth

sub-band.
We now wish to determine a threshold with which to

compare the SNR measure to, and thus determine if the null
or alternative hypothesis is more likely. We represent this
comparison as,

ψk( f , l)≷H1
H0

ηk( f ), (4)

whereηk( f ) is a threshold in thef th frequency bin andkth

sub-band.
As per [6] a threshold in terms of the probability of false

alarm can be determined. This threshold may be derived as,

ηk( f ) =
√

2σ2
v,k( f ) ·er f c−1(2PFA), (5)

wherePFA is the probability of false-alarm ander f c−1(u) is
the inverse complementary error function.

A decision is made in each sub-band by comparing the
average of the SNR measure over frequency, to the average
of the threshold over frequency,

1
L

L−1

∑
f=0

ψk( f , l)≷H1
H0

1
L

L−1

∑
f=0

ηk( f ), (6)
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Figure 2:Block Diagram of Decision Device

whereH1 is decided if the average SNR is larger than or equal
to the average threshold, otherwiseH0 is decided. As per Fig.
1, Dk(l) is decided as,

Dk(l) =
{

1, ∑L−1
f=0 ψk( f , l) ≥ ∑L−1

f=0 ηk( f ), (7)

0, otherwise.

4.1 Implementation

Figure 2 illustrates the implemented decision device. This is
identical for all sub-bandsk. Initially, thekth sub-band signal
is divided into overlapping frames of lengthL. By combining
multiple frames, the Welch method of overlapping windows
is then used to determine the PSD.

Next, the SNR measure is calculated as per (2), where
P̂vv( f ) is estimated during an assumed initial non-speech pe-
riod. The SNR measure is then smoothed with an exponential
average. The smoothed SNR measure is calculated as,

ψ̄k( f , l) = α ψk( f , l)+(1−α) ψ̄k( f , l −1), (8)

whereα is the smoothing coefficient. A value ofα = 0.95
was found to give good results for this implementation.

The smoothed SNR measure is then averaged over all fre-
quency binsf and compared to the averaged thresholdηk to
determine the initial decision.

During the assumed initial non-speech period the vari-
ance of the SNR measure is estimated. The variance is used
to compute the threshold for each frequency bin as per (5).
This threshold is then averaged over all frequency binsf and
compared to the averaged SNR measure to determine speech
activity. If the average SNR measure is larger or equal to the
average threshold, thenDk(l) is set to ‘1’, otherwiseDk(l) is
set to ‘0’ as per (7).

In this implementation the probability of false alarm
(PFA) was set to 0.05 (5%) and the number of overlapping
frames used to estimate the PSD was 2. Further, the thresh-
old ηk( f ) was updated during periods of non-speech activ-
ity as determined by the sub-band speech activity decisions
Vk(l). The variance of the SNR measure during non-speech
periodsσ2

v,k( f ) was also updated by this method.

5. DECISION ANALYSIS

The decision analysis block is incorporated to help reduce
false alarms. It does this in two distinct ways, firstly, if a
single sub-band indicates there is speech, when no adjacent
sub-bands indicate speech, then this is considered to be a
false alarm. The initial speech-active decision is then set to
speech-inactive. Secondly, if less thanQsub-bands are active
at one instance, it is assumed that there is no speech present.
All speech-active decisions are then set to speech-inactive.

Note, the action of the decision analysis depends highly
on the assumption that adjacent sub-bands are uncorrelated.
Further, during periods of speech activity, it is assumed that
more thanQ sub-bands will be active.

The first action of the decision analysis can be expressed
by initially estimating a metric,

Mk(l) =
1

∑
p=−1

Dk+p(l) k = 1,2, ...,K−2. (9)

The final decisionVk(l) is then determined in the following
way,

Vk(l) =
{

0, Mk(l)≤ 1, (10)
Dk(l), Mk(l) > 1,

for k = 1,2, ...,K−2. The final decision for the casesk = 0
andk = K−1 are set as,Vk(l) = Dk(l).

The final decisionVk(l) is then subject to the secondary
test. A second metricP is calculated as,

P(l) =
K−1

∑
k=0

Vk(l). (11)

The final decision is then modified as,

Vk(l) =
{

0, P(l)≤Q, (12)
Vk(l), P(l) > Q,

for all k. Through experimentation a value ofQ = 8 was
found to be appropriate for the particular implementation,
however this is dependent on the sampling frequency of the
original data and the number of sub-bandsK, and should be
tuned appropriately.

6. EVALUATION

In order to evaluate the scheme, two short sequences were
chosen to illustrate the concept of multi-decision sub-band
VAD. A formal analysis such as in [9] was not undertaken.
The primary reason for this is that the traditional VAD met-
rics do not directly apply to this scheme given its multi-
decision sub-band nature, and the scheme cannot be com-
pared to current schemes in the usual manner.
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Figure 3:First sequence time domain data, spectrogram, de-
cision device outputDk(l), and final VAD outputVk(l) (white
Gaussian noise)
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Figure 4: Second sequence time domain data, spectrogram,
decision device outputDk(l), and final VAD outputVk(l) (ve-
hicle noise)

Each sequence was approximately 9 seconds in length
and was created by concatenating spoken digits from the
TIDIGITS database (both connected and discrete). The first
spoken sequence was “nine, eight, four-six, one-six-one”.
The second sequence was “one, two, two-nine-nine-two,
three, five”. White Gaussian noise was added to the first se-
quence with an average SNR of approximately 15dB. Vehicle
noise from the NOISEX-92 database was added to the sec-
ond sequence with an average SNR of approximately -10dB.
The sampling frequency of the data was 8000Hz.

Figure 3 illustrates the multi-decision sub-band VAD
concept. The figure shows the original time domain data of
the first sequence, a spectrogram of the data, the decisions as
decided by the decision device for each sub-band and the fi-
nal decision as decided after the decision analysis. As can be
seen, the decision analysis removes many false alarms, with
negligible impact on the detection of speech. Further, the
merits of the concept of multi-decision sub-band VAD can
be clearly seen. From the final decisionsVk(l), it is clear that
noise statistics may be updated during what would tradition-
ally be referred to as speech periods.

Figure 4 further illustrates the utility of the multi-
decision sub-band voice activity detector. The vehicle noise
is primarily low frequency in nature. Examining the results,
we see the multi-decision sub-band voice activity detector
is unreliable in the lower few sub-bands, where it is unable
to discriminate speech activity from noise. However in all
other sub-bands, you can clearly see the scheme operates as
expected, thus illustrating the effectiveness of multi-decision
sub-band VAD. Traditionally, a voice activity detector would
have trouble detecting speech active periods due to the ex-
tremely low SNR of this sequence.

7. CONCLUSION

In conclusion the concept of multi-decision sub-band VAD
was introduced. The concept hinges on the fact that speech
will not simultaneously encompass all frequencies at a given
moment. Bearing this in mind, it was proposed that speech
activity decisions could be made independently in sub-bands,
resulting in a set of multiple speech activity decisions for any
instance.

A method for making multi-decision sub-band speech ac-
tivity decisions was proposed. The method utilized an over-
sampled polyphase filter bank to decompose the original data
into multiple parallel sub-bands. These sub-bands were then
independently tested for speech activity using a statistical
mechanism.

Finally, evaluations indicated that multi-decision sub-
band VAD can be useful, especially in speech enhancement
applications. This usability comes from the ability of the
scheme to allow noise statistics to be updated during what
would traditionally be labeled speech active regions.
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