
DETECTION PERFORMANCE FOR THE GMF APPLIED TO STAP DATA
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ABSTRACT

A major problem with most standard methods working on
STAP data is their lack of robustness in the presence of hetero-
geneous clutter background. Indeed most of them rely on the as-
sumption that the clutter remains homogeneous over quite a large
range. We apply to the STAP data, a high-resolution method called
the Global Matched Filter (GMF). Since it models and identifies
both the interferences (clutter and jammer(s)) and the target(s) from
the data by only using the snapshot of interest, it solves the above
mentioned difficulty. We describe here how to apply the GMF to
the STAP data and we compare its performance to the other STAP
methods by establishing the target detection probability for a con-
stant false alarm rate.

1. INTRODUCTION

Radar technology has vastly evolved over the last 50 years but most
progress has been made in the past two decades. A requirement of
next generation airborne radar is to detect targets in a perturbation
background comprising interferences (clutter and potentially jam-
mer) and noise. In this aim space-time adaptive processing (STAP)
has been proposed as a leading technology for improving the per-
formance of detection algorithms [1, 2].

As clutter suppression is critical to surveillance radar, the need
for adaptive methods arises in practice when the statistics of the
perturbation (interference plus noise) are unknown and must be in-
ferred from the data. In moving radar platforms, the clutter may
vary significantly from cell to cell, hence STAP performance is lim-
ited by how well the estimated interference plus noise covariance
matrix represents the actual cell perturbation. This problem is even
more important in a notably heterogeneous clutter environment.

The new approach we propose here allows to handle this type of
environment. It is based on a high-resolution method denominated
Global Matched Filter (GMF) [3]. This method has been developed
in a sparse representation context and has many areas of applica-
tion, notably in joint detection and estimation. The advantage of the
GMF is its ability to separate target from clutter by relying only on
the information contained in the range bin of interest. It follows that
perturbation covariance matrix estimation is no longer necessary.

In this paper, we apply the GMF to STAP data and compare its
performance to those of fully adaptive and partially adaptive pro-
cessings by comparing the probabilities of detection (Pd) of these
methods.

In Section 2, we will describe the STAP model. In Section 3
we show how to adapt the GMF method to the STAP context. Then
in Section 4, we give the formulas of the probability of false alarm
and detection for the currently used methods and for the GMF. Fi-
nally, we will present some simulation results in Section 5 before to
conclude in Section 6.

2. PRELIMINARIES TO THE STAP

Conventional radars are able to detect targets in the time domain
(range) and the frequency domain (Doppler frequency). To improve
radar performance, advanced signal processing techniques have
been developed. Space-time adaptive processing provides an
additional dimension (space) for the detection of moving targets.

The idea is to apply a two-dimensional filter (which uses both
temporal and spatial filtering) in order to maximize the output
signal-to-interference-plus-noise ratio (SINRout).

For simplicity the airborne pulse-Doppler radar considered here
is a multichannel receiver linear antenna array. The array consists of
Ns sensors and the radar transmits a coherent burst of Np pulses at
constant pulse repetition frequency fr

� 1 � Tr where Tr is the pulse
repetition interval (PRI). In each PRI, Nd range samples are col-
lected. The time interval over which the waveform returns are col-
lected is commonly referred to as the coherent-processing interval
(CPI) and the data are collected in the well-known

�
Ns � Np � Nd � -

dimensional data cube. The data is then processed at one range of
interest corresponding to a slice of the CPI data cube. This slice
is converted into a NsNp-dimensional vector called snapshot. We
assume that a target remains in one range gate during a CPI. If a
target is present in the range gate of interest, then the snapshot ’s’
has contributions due to the target and the perturbations (clutter, re-
ceiver thermal noise and potentially jammer):

s � αst
�
φ̃ � f̃ ��� spert (1)

where α � φ̃ � f̃ are the target amplitude, normalized angle and nor-
malized Doppler frequency respectively. Here st

�
φ̃ � f̃ � represents

the spatio-temporal steering vector associated with the target:

st
�
φ̃ � f̃ � � u

�
f̃ �	� v

�
φ̃ �

where � represents the Kronecker tensor product and

u
�
f̃ � ��
 1 e � j2π f̃ 
�
�
 e � j2π � Np � 1 � f̃ � T

v
�
φ̃ � ��
 1 e � j2πφ̃ 
�
�
 e � j2π � Ns � 1 � φ̃ � T

are the Np-dimensional spatial steering vector and Ns-dimensional
temporal steering vector. The perturbation component spert is mod-
eled as:

spert
� sc � s j � n

where n represents the receiver thermal noise, s j the contribution
of the jammers and sc the contribution of the clutter. The noise
is assumed to be a zero-mean complex Gaussian random process
n ��� �

0 � σ2I � . The jammer signal is

s j
���

k

α j
k

st
�
φ̃ j � f̃k � (2)

where φ̃ j is the jammer azimuth angle, and α j
k

represents the am-

plitude of the received jammer signal for Doppler frequency f̃k. We
assume that the jammer is localized in space (i.e., has a fixed direc-
tion) but is spread in Doppler. If multiple jammers are present, a
sum of terms like (2) is expected to contribute to the perturbation
vector spert . The clutter component can be modeled as the sum of
many targets with a complex amplitude αc

k .

sc
� �

k

αc
k st

�
φ̃k � f̃k �

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



The main feature distinguishing clutter from moving targets is their
zero speed which induces the following relation between the clutter
normalized Doppler frequency and the normalized angle:

f̃k
� 2vairborneTr

d
φ̃k
� βφ̃k

Below, we consider that the parameter β is adjusted to be equal to
1.

The space-time processor linearly combines the elements of the
snapshot s yielding the scalar output

y � wHs

where the superscript ’H’ denotes conjugate transposition and w
is a NsNp weight vector. It is well known that the weight vector
maximizing the output SINR [4] is

w � R � 1
pertst

�
φ̃ � f̃ � (3)

where Rpert
� E

�
sperts

H
pert � is the perturbation covariance matrix.

To apply this processor, Rpert is in general estimated on the adja-
cent range gates of the snapshot of interest. Yet, the use of this
fully adaptive STAP is infeasible in most radar applications due to
both the computational cost and the large number of adjacent da-
ta vectors required (the assumption of stationary and homogeneous
clutter is realistic only over a limited range around the current slice).
Hence many partially adaptive (or sub-optimal) methods have been
developed.

3. GLOBAL MATCHED FILTER

3.1 Description of the method

The Global Matched Filter applies to any situation where a noisy
real observation vector can be modeled as a sum of noise and a small
unknown number of elementary signals of a parameterized family,
i.e., when the m-dimensional observation vector can be represented
as

b �
p�

i � 1

a
�
θi � xi � e (4)

where e is the additive noise vector and p is the unknown number of
components to be estimated together with the θi’s, the value of the
scalar or vector of parameters and the xi’s the associated weights.

If e is assumed to be Gaussian, the maximum likelihood esti-
mates of

�
xi � θi � are obtained by solving the non-linear least-squares

problem

min
θi
� xi

�
b �

p�
1

a
�
θi � xi

� 2
2 �

As this problem is non linear and p is unknown, it is difficult to
solve. The GMF proposes to turn it into a convex program having
a large number of unknowns as follows. One uniformly discretizes
the θ parameter in its domain of interest and constructs with the n
columns a j

� a
�
θ j � -with θ j on a regular grid- a matrix A having

thus far more columns than rows (n � m). The idea is then to seek a
sparse representation of b

b � Ax

where x is a parsimonious weight vector having of the order of p
non zero components. One way to obtain such a parsimonious rep-
resentation is to use the � 1-norm. The corresponding optimization
problem is thus

min
x

�
x
�

1 � subject to
�
b � Ax

� 2
2
�

B (5)

which is equivalent to the easy-to-solve quadratic criterion

min
x

1
2
�
b � Ax

� 2
2 � h

�
x
�

1 � h 	 0 (6)

for an adequately chosen parameter h. Note that the � 1-norm penal-
ty term ensures the sparsity of the solution whereas the � 2-norm
ensures the good approximation of b and h monitors the weight be-
tween both terms.

3.2 Adaptation to the STAP context

In this part we will explain how to apply the GMF to the obser-
vation model (1). Due to the particular structure of clutter and
jammer, equation (1) appears to be of the same form as (4) if one
identifies

�
φ̃i � f̃i � with the parameter θi. The only difference is that

model (1) is a complex equation whereas (4) is real. Two steps are
thus required to apply the GMF: transformation of the snapshot
into a real vector and construction of the A matrix.

For the first step, we apply to the complex s-vector a set of s-
tandard beamformers tuned to m equispaced spatio-temporal points.
This transforms the NsNp-dimensional complex vector s into a m-
dimensional real vector that will be the input-data to the GMF, the
b-vector in (6). A steering vector st

�
φ̃i � f̃i � is associated with each

such spatial and temporal point and the corresponding beamformer-
output applied to the snapshot s is:

bi
��
 st

�
φ̃i � f̃i � Hs
 2 � � NsNp � 2 � for i � 1 ���m

In order to keep all the information, it is suggested in [3] to take m
equal to the number of degrees of freedom (d.o.f) of the covariance
matrix of the snapshot. In our case, this gives m � 2NsNp � 1 which
is also the number of real d.o.f. in s.

To construct the A matrix, normalized angle and Doppler
frequency must be more finely discretized in their domain of defini-
tion at n � m values

�
φ̃ j � f̃ j � . The n corresponding steering vectors

st
�
φ̃ j � f̃ j � are in turn transformed by the set of m beamformers

described above. The corresponding output-vectors are normalized
to one in Euclidean norm and each of them will represent a column
of the m � n real matrix A. The number n is chosen large enough to
allow the approach to attain the Cramer Rao bounds. In practice,
for standard values of Signal-to-Noise-Ratios (SNR’s), one expects
to improve the standard beamformer resolution by a factor 2 or 3.
Hence we propose to discretize the frequency and azimuth domain
at at least 9Np and 9Ns points. The typical dimension of A is thus�
2NsNp � 1 � �

�
81NsNp � .

Since clutter and jammers can be represented by a sum of nui-
sance targets (zero-speed for the clutter and fixed azimuth for the
jammer), one can expect that they will be estimated and detected
just as the target of interest by the GMF. We will represent the out-
put of the GMF in the way presented in Figure 2 (see Section 5)
where clutter, jammer and a target are present. It consists in ploting
the values of the solution x on a regular grid (see Figure 1) where
each cell is associated with a couple

�
φ̃p � f̃q � that corresponds to a

given column of A. Typically, one expects that clutter will be repre-
sented on the diagonal line φ̃ � f̃ .

4. PROBABILITY OF DETECTION

4.1 Fully and partially adaptive methods

Processing STAP data consists in deciding between two hypotheses
for each range bin

H0 : s � spert

H1 : s � αst
�
φ̃ � f̃ ��� spert �

where α ��
 α 
 e jδ is a complex gain whose random phase δ is uni-
formly distributed between 0 and 2π . Under H0 the signal consists
of interference (clutter and potentially jammer) plus noise whereas
under H1, a target signal also appears. A statistical test can be built
to determine if a target is effectively present in the range bin of in-
terest. When perturbations are assumed to be Gaussian, the random
vector s, conditioned on δ , is also Gaussian. When the perturbation
covariance matrix is perfectly known, the adaptive constant false
alarm rate (CFAR) detection test amounts to compare the maxi-
mum, over NsNp couples, of the output power of the STAP filter
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divided by the output perturbation power to a threshold T [5, 6, 7]:

max
m � n

� 
 sH
t
�
φ̃m � f̃n � R � 1

perts

 2

sH
t
�
φ̃m � f̃n � R � 1

pertst
�
φ̃m � f̃n ��� H1�

H0

T (7)

where st
�
φ̃m � f̃n � are spatio-temporal steering vectors evaluated at

Ns equispaced spatial points and Np equispaced temporal points.
The threshold T is fixed to achieve a given probability of false alarm
(Pf a) as [5]

T � � ln
�
1 �

�
1 � Pf a � 1 � NsNp � �

Since the covariance matrix Rpert is unknown it is usually estimated
from L adjacent range bins

R̂pert
� 1

L

L�
k � 1

sksH
k

where sk are snapshots belonging to the neighborhood of s. One
generally takes L � 2NsNp to get an invertible reasonably accurate
estimate. The CFAR test is then performed as in (7) by replacing
Rpert with its estimate. As we have already pointed out in Section
2, this fully adaptive filter is not achievable in practice both because
of computation time and lack of homogeneity of the clutter. Ward
[2, 8] has developed partially adaptive processors to reduce both
computational time and training requirements (smaller L). A par-
tially adaptive STAP is defined to be a processor which is not adap-
tive simultaneously in both the spatial and the temporal domain.
Four different STAP structures can be defined: element-space pre-
doppler, element-space post-doppler, beam-space pre-doppler and
beam-space post-doppler. These sub-optimal methods use reduced
vectors and consequently reduced perturbation covariance matrices
to perform a CFAR test similar to (7) .

4.2 The GMF

To simplify the approach, we will consider in the sequel that only
clutter contributes to the interferences. In the GMF, the CFAR test
(7) is replaced by an adequate choice of the parameter h in (6). In
(6), h allows to tune the parsimony of x, i.e., the larger h the more
parsimonious x. Under H0 and if the perturbation is limited to the
thermal noise, it is indeed possible for a given σ 2 to attain any
given false alarm (a non-identically zero optimal x in (6)) rate by
tuning the value of h.

But this is quite an unrealistic case and we consider now the
case where clutter is present and σ 2 unknown. In the GMF we
need to first estimate σ 2 which we assume to be constant over all
the snapshots in the data cube. The covariance matrix of all these
snapshots sk is then estimated as

R̂ � 1
Nd

Nd�
k � 1

sksH
k

and it can be decomposed as

R̂ � Rt � R̂ global
c � σ̂2I � R̂ global

c � σ̂2I �
where Rt represents the contribution of the few targets present
in the cube, R̂ global

c is the covariance matrix of all the clutter
present and σ̂2I is the covariance matrix of the thermal noise.
One can neglect Rt in this expression. The Brennan rule [9] states
that the clutter matrix rank is equal to Ns � β

�
Np � 1 � . As R̂ is

a
�
Np � Ns � -dimensional matrix, this means that R̂global

c is rank
deficient and an estimate σ̂2 of σ2 is then easily deduced from the
smallest eigenvalues of R̂.

Figure 1: Representation of discretized normalized azimuth φ̃ and
Doppler frequency f̃ domain.

In contrast to fully or partially adaptive filters which seek
to eliminate the clutter by whitening the snapshot (3), the GMF
estimates it. As we have seen in Section 3.2 , the GMF will
represent the clutter by targets that are on or close to the diagonal
which corresponds to zero-speed targets (see Figure 2). Some
spurious peaks (non zero-components in x) induced by the clutter
can appear in the neighborhood of the diagonal. To achieve a given
Pf a, we will tune h by only looking at the white zone of Figure
1 whose boundaries are fixed a priori and where we are sure that
only the thermal noise will induce non-zero components in x. This
tuning is done experimentally once and forever.

Once h is fixed in this way, one can further determine a
posteriori the precise boundaries of the area where the clutter may
induce spurious peaks (for the current h). This means that we
will not be able to detect targets within this area, i.e., targets that
are too slow. We thus define clutter boundary lines (see Figure
1) by introducing a parameter Nb that is experimentally fixed by
performing a large number of realizations (clutter and thermal
noise). Larger values of h (smaller Pf a) correspond to smaller Nb,
finer clutter zones. For the GMF, Nb can be assimilated to the
minimum detectable velocity (MDV) which is another criterion of
performance [10]. In Section 5, we will comment on the tradeoff
between the choice of parameter h and the MDV.

Now, for a given Pf a, the detection performance of the GMF for
different Signal-to-Noise-Ratios can be experimentally determined.
Since the probability of detection of fully and partially adaptive
methods dramatically deteriorates when a target is close to the
clutter ridge, we will simulate, as is usually done, targets that are
far from it to compare the probability of detection of the GMF with
those of the others methods. The analysis of the GMF detection
performance with a target close to clutter ridge is the subject of
further investigations.

5. EXPERIMENTAL RESULTS

All simulations have been performed for Ns
� Np

� 10. The
normalized azimuth and normalized Doppler frequency both
belong to � � 0 � 5 � 0 � 5 � . To build b the input-vector, we discretize
both spaces with a step of 0 � 07 that leads to m � 225. To build the
A matrix, we take a step equal to 0 � 01 in azimuth and frequency,
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this gives n � 10201. Both values are slightly larger than the values
announced in Section 3.2. essentially because we took rounded
step values. As we have pointed out in Section 4.2, at each Pf a

and noise variance σ 2 corresponds a h parameter. For instance, to
have Pf a

� 10 � 6 for σ2 � 1, we obtained experimentally that the h
parameter must be fixed to h � � 30 which in turn leads to Nb

� 15
(to be compared to the 101 discretization steps)for reasonable value
of clutter-to-noise power ratio. The two following simulations have
been performed with these values.

The first simulation presents the results obtained by the GMF
for a quite standard scenario with one target at

�
φ̃ � � 0 � 2 � f̃ � 0 � 2 �

and SNRout
� 20dB. Note that the SNRout is the output Signal-to-

Noise-Ratio of the GMF and is thus defined as follows:

SNRout
� 10log10 � α2 
 s

�
φ̃i � f̃i � Hst

�
φ̃ � f̃ � 
 2�

NsNp � 2
NsNp

σ2 � (8)

� 10log10 � α2

σ2 � � 10log10
�
NsNp �

� SNRin � 20dB

We can observe that in our configuration we have a gain of 20dB
between SNRout and the input Signal-to-Noise-Ratio SNRin. The
interferences have the following properties: the output Clutter-to-
Noise-Ratio (defined in a similar way to (8) ) is CNRout

� 30dB and
one jammer is localized at φ̃ � 0 � 3 with JNRout

� 30 dB (output
Jammer-to-Noise-Ratio). The GMF is applied to the corresponding
(unique) snapshot and a typical representation of its output is given
in Figure 2. We can see that clutter ridge and jammer are well
localized whereas the target can be easily identified. Note that to
solve the GMF criterion (6) with a low computational cost, efficient
algorithms have been recently developed [11, 12]. With the below
configuration (about ten thousand unknowns), the GMF is solved
in about 3 seconds on standard desk computer.

In the second simulation we compare the detection performance
of the GMF with those of the methods studied in [5]. In [5] fully
and partially adaptive (reduced-dimension) methods are compared.
The target to be detected is localized at

�
φ̃ � 0 � 3 � f̃ � � 0 � 2 � .

Figure 3 gives the probability of detection versus the output SNR.
For fully and partially adaptive methods, detection performance
principally depends on the number L of snapshots used to estimate
the interference covariance matrix. The GMF performance, which
only uses the snapshot of interest, has performance close to those
of the partially adaptive methods when L � 50, i.e. five times
the number of snapshots required to have an invertible estimate
of the perturbation covariance matrix. Note that L � 50 remains
too important in a transient and inhomogeneous environment and
the GMF thus appears as a highly efficient alternative method to
process data in such an environment.

Finally, in a last set of simulations we analyze how the detec-
tion performance varies when h increases. Increasing h amounts
to diminish the Pf a and allows to reduce the size of the domain
where the clutter may induce peaks in the output of the GMF, i.e.,
it allows to detect slower moving targets. We thus observe, in Fig-
ure 4, a degradation of the detection performance when h increases.
Nevertheless if h is fixed to � 7 for instance, the GMF detection per-
formance is still better than those of partially adaptive methods with
L � 20 (compare with Figure 3). Note that for h � � 7 the clutter res-
olution width becomes Nb

� 7, it was equal to 15 for h � � 30. We
have not estimated the corresponding Pf a which is extremely small.

6. CONCLUSION

Many efforts have been done during last decade to reduce the num-
ber of adjacent range gates required to estimate the perturbation co-
variance matrix and provide more robust filters in severely hetero-
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Figure 2: Typical representation of the GMF.
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Figure 3: Probability of Detection for fully and partially adaptive
STAP and the GMF.

geneous clutter environments. These improvements have been es-
sentially performed with reduced-dimension techniques [2] or with
reduced-rank techniques [13, 14, 15]. The GMF appears as a power-
ful method to circumvent the covariance estimation problem. Since
the GMF identifies both the targets and a model of the interferences
it has the advantage to be able to work on a single snapshot with-
out prior estimation of the perturbation covariance matrix. In this
preliminary study of the application of the GMF to STAP data, we
compared the detection performance of the GMF to those of a rep-
resentative reduced-dimension method.
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