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ABSTRACT

This paper addresses the problem of classifying digital modula-
tions in a Rayleigh fading environment. The first step of the pro-
posed classifier consists of estimating the parameters unknown by
the receiver, i.e., the fading amplitude, phase offset, and residual
carrier frequency. These unknown parameters appearing in the
class conditional densities are then replaced by their estimates, re-
sulting in a so-called plug-in classifier. The performance of this
classifier is compared to another classification strategy recently
proposed to solve the modulation classification problem in a fading
environment.

1. INTRODUCTION

Digital modulation classification consists of identifying the type of
a modulated signal corrupted by noise. It is required in many com-
munication applications including cooperative and non-cooperative
scenarios [1]. The most popular modulation classifier (often re-
ferred to asoptimal classifier) is probably the Bayes classifier
which minimizes the average probability of error (or an appropri-
ate average cost function). However, the Bayes classifier may be
difficult to implement due to its high computational complexity.
This is particularly true for the classification of digital modula-
tions, because averaging over the data symbols leads to an expo-
nential computational complexity, when there are too many para-
meters unknown at the receiver. Also, the Bayes classifier is not
robust to model mismatch. To overcome the difficulties inherent
to the Bayesian strategy, several suboptimal likelihood based clas-
sifiers have been proposed in the signal processing and commu-
nication literature (see for instance [1, 2, 3]). The main idea of
these classifiers is to avoid the costly integration required to derive
the posterior distribution of the unknown parameters. This inte-
gration can be avoided by estimating the unknown parameters and
using the generalized likelihood ratio test [4], by approximating
the average likelihood ratio test [2], or by using hybrid solutions
[5]. An alternative to likelihood based classifiers is to extract in-
teresting features from the observations and use the features for
classification. In this case, the key point is to find the“appropriate”
set of features depending on the considered communication sys-
tem. Many features have been proposed in the literature including
statistical moments [6] or higher-order statistics [1].

A considerable number of researches has been carried out on
modulation classification mitigating the effect of the additive white
Gaussian noise (AWGN), the phase offset, and the residual carrier
frequency. However, in practice, the transmitted signal may prop-
agate through various additional impairment environments includ-
ing fading. The problem of classifying communication signals in
presence of fading has received less attention in the literature. The

Bayes classifier was studied in [7] for BPSK and QPSK modula-
tions. An hybrid likelihood-based solution was studied in [3] for
QAM modulations. The proposed methodology consists of esti-
mating the unknown parameters by the method of moments and
plugging these estimates in the likelihoods. The main contribution
of this paper is to extend the classification rule studied in [8] for
modulations subjected to Rayleigh fading. The proposed strategy
is similar to the one developed in [3] except the unknown parame-
ters (residual carrier frequency, phase offset, and fading amplitude)
are estimated by using the minimum mean square error estimator.
The numerical problems related to this estimator are circumvented
by using Markov chain Monte Carlo (MCMC) methods. Note that
the main novelty of the proposed classification rule with respect to
[8] is that the fading amplitude is estimated (contrary to [8]).

This paper is organized as follows. Section 2 presents the sig-
nal model used for modulation classification. Section3 recalls the
well-known maximum likelihood classifier, which minimizes the
probability of error, for known residual carrier frequency, phase
offset, and fading amplitude. The problem of estimating the pa-
rameters unknown to the receiver is addressed in Section4. A
plug-in classifier combining parameter estimation and maximum
likelihood classification is also proposed. Simulation results and
conclusions are reported in Sections5 and6.

2. SIGNAL MODEL AND ASSUMPTIONS

This work considers a synchronous transmission scheme over a
Rayleigh fading channel. This kind of transmission yields resid-
ual carrier frequency and phase offsets due to imperfect coherent
downconversion. We assume here that there is no residual chan-
nel effects and that the amplitude factor is random due to fading
as in [5, 7]. However, this study could be extended to more gen-
eral models including a residual channel and timing errors (as in
[9]). After preprocessing, the baseband complex envelope of the
received signal sampled at one sample per symbol at the output of
a matched filter can be written as in [1]:

xk = αe
j(π k

Ns
fr+φ)

sk + nk, k = 1, 2, ..., Ns, (1)

where

• Ns is the number of symbols in the observation interval,

• sk is an i.i.d. symbol sequence drawn from one ofc con-
stellations denoted{ω1, ω2, ..., ωc}, whereωj is a set of
Mj complex numbers{S1, S2, ..., SMj},

• φ is a phase offset (resulting from fading phase and syn-
chronization errors),

• fr = 2Ns(fc − f̂c) ∈ (−1/2, 1/2] is a normalized resid-
ual carrier frequency also called frequency offset (fc is the
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carrier frequency and̂fc is the frequency of the local oscil-
lator). Note that these notations imply thatfr is the constel-
lation rotation whose maximum value isπ/2 for k = Ns),

• α is the unknown real amplitude factor,

• nk is an independent and identically distributed (i.i.d.) com-
plex Gaussian noise sequence which has zero-mean and
varianceσ2

n (the real and imaginary components ofnk are
independent and identically distributed).1

When the signal is transmitted through a slow flat fading chan-
nel, the attenuation factorα can be regarded as a random variable
whose probability density function (pdf) is Rayleigh

p(α) =
α

σ2
α

exp

�
− α2

2σ2
α

�
IR+(α), (2)

whereIR+(.) is the indicator function onR+ (i.e. IR+(α) = 1 if
α > 0 and0 else).

3. ML CLASSIFIER (KNOWN PARAMETERS)

Bayes theory provides a minimum error-rate classifier by finding
the maximum a posteriori probabilitiesP (ωj |x), for j = 1, 2, ..., c.
If all modulations are equally-likely, the optimal Bayes classifier
reduces to the Maximum Likelihood (ML) classifier. The ML clas-
sifier selects the modulation of the samplesx = (x1, x2, ..., xNs)
as the one that maximizes the pdfp(x|ωj). Such problem was
studied in [10] in the ideal situation whereα, fr, φ andσ2

n are
known a priori. The ML classifier can be defined as follows:

Assignx to ωi if l(x|ωi) ≥ l(x|ωj), ∀j = 1, ..., c,

where

l(x|ωj) =

NsX
k=1

ln

�
1

Mj

MjX
i=1

exp

�
− 1

σ2
n

‖ xk − Si ‖2
��

(3)

is obtained after dropping constants in the log-likelihood of the ob-
served signal. It is important to note that knowing all parameters
α, fr, φ and σ2

n is unrealistic in most communication systems.
However, this assumption allows to obtain a reference to which
suboptimal classifiers can be compared. More precisely, this ideal
classifier provides an upper bound (for instance, in terms of prob-
ability of correct classification) of the expected performance for a
digital modulation classifier.

4. THE PLUG-IN MCMC CLASSIFIER

This section studies a plug-in classifier for classifying digital mod-
ulations subjected to Rayleigh fading. We assume that the received
signal amplitude varies from one observation interval to another
and is unknown to the receiver. This assumption is realistic in a
slow fading context and has been used in [7]. In this case, the
classifier has to mitigate the amplitude changes to yield good clas-
sification performance. One solution to this problem is to assign
some prior distribution to fading amplitude and phase, then in-
tegrate out these parameters from the likelihood. However, this
strategy yields classification rules with exponential implementa-
tion complexity [3]. An alternative is to estimate the unknown

1The parameterσ2
n is assumed to be known without loss of generality.

Indeed, an estimate is usually available in practice, as explained in [1].

parameters and then replace the unknown parameters by their es-
timates in the likelihood. This strategy, sometimes referred to as
plug-in rule, has shown good classification properties in fading en-
vironment [3]. This section studies aplug-in rulewhich estimates
the phase offset, residual carrier frequency and fading parameters
for modulation classification purposes. Note that

4.1. Plug-in rule

Denote asθ = (fr, φ, α) the unknown parameter vector. The
plug-in rule is defined as follows:

assignx to ωi if l(x|θ̂i) ≥ l(x|θ̂j),∀j = 1, ..., c, (4)

wherel(x|θ̂j) is the logarithm of the likelihood associated to class
ωj (whose constellation consists ofMj symbolsS1, S2, ..., SMj )

l(x|θ̂j) =

NsX
k=1

ln

�
1

Mj

MjX
i=1

exp

�
− 1

σ2
n

‖ xk − yi ‖2
��

, (5)

and
yi = α̂Sie

j(π k
Ns

f̂r+φ̂)
.

The plug-in rule can be used as soon as estimates of the unknown
parameter vectorθ can be obtained conditionally upon each class
ωj . This is the purpose of the next subsection.

4.2. Parameter estimation

Estimating the parameter vectorθ can be made by using the method
of moments as in [3]. However, Bayesian estimators are often pre-
ferred because of their asymptotic properties. A Bayesian estima-
tion technique was studied in [8] to estimate the unknown phase
offset, carrier frequency and residual channel in absence of fad-
ing. This section shows how the method can be extended to sig-
nals subjected to fading. More precisely, the unknown parameter
vectorθ = (fr, φ, α) is estimated conditionally to each possible
classωj according to the Minimum Mean Square Error (MMSE)
principle (which minimizes the standard quadratic cost function
E[(θ̂ − θ)2|ωj ])

θ̂MMSE = E[θ|x, ωj ]. (6)

The subscriptωj will be removed in the rest of this paper, for
brevity. Obviously, a closed-form expression for the MMSE es-
timator of θ cannot be obtained. However, the MMSE estimate
(which is the mean of thea posteriori density) can be approxi-
mated as follows

θ̂MMSE =

Z
θp(θ|x)dθ ' 1

N

NX
i=1

θi, (7)

whereθi, i = 1, ..., N are samples drawn fromθi ∼ p(θ|x). This
result can be used to approximate the MMSE estimatorθ̂MMSE, as
soon as it is possible to generate samplesθi distributed accord-
ing to p(θ|x). This paper proposes to generateθi by using the
Metropolis-Hastings (MH) algorithm. The MH algorithm consists
of drawing samples distributed according top(θ|x) by running an
ergodic Markov chain whose stationary distribution is the target
distributionp(θ|x). The reader is invited to consult [11] for more
details. The Markov chain state space and current state are de-
noted byΩ andθn = (fn

r , φn, αn) ∈ Ω, respectively. At each
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iteration, a candidatez is drawn according to an instrumental dis-
tribution q(z|θn). This candidate is accepted with the following
probability:

α(θn, z) = min

�
1,

p(z|x)q(θn|z)

p(θn|x)q(z|θn)

�
. (8)

4.3. Instrumental Distribution

A fundamental property of the MH algorithm is that any instru-
mental distributionq(z|θn) can be chosen, provided that the sup-
port of p(·|x) is contained in the support ofq(z|θn) [11]. This
paper proposes to drawz from a local perturbation of the previous
sample, i.e.,z = θn + ε, leading to the well-known random-walk
MH algorithm. In this case, the instrumental distribution is of the
form q(z|θn) = g(z− θn). Interestingly, the choice of a symmet-
ric distribution forg leads to an acceptance probability which is
independent onq.

Instead of updating the whole ofθ en bloc, it is often more
convenient and computationally efficient to divideθ into k blocks
and to update each block one-at-a-time. This procedure has been
suggested by many authors (see [11] for more details) and has been
shown to improve the mixing property of the sampler. Here we
propose to updateθ one component at-a-time. Such strategy, in-
deed, exhibits good performance in classification of digital modu-
lations, as shown in Section 5.

4.4. Reducing the computational complexity

The acceptance probability (8) depends on the pdfsp(z|x) and
p(θn|x) whose computation requires to evaluate summations of
logarithm functions. This operation can be easily and efficiently
conducted on MATLAB. However, in practical applications where
a Digital Signal Processor (DSP) has to be used, the evaluation of
a logarithm function is too expensive. Instead, by denotingaM =

p
max
i=1

ai, the following approximation can be used:

ln

 
pX

i=1

eai

!
= aM + ln

0@1 +
X
i6=M

eai−aM

1A ,

' aM =
p

max
i=1

ai.

By applying this result toai = − 1
σ2

n
‖ xk − yi ‖2, the following

result can be obtained

l(x|ωj) ∝
NsX
k=1

�
− ln Mj + ln

0@MjX
i=1

eai

1A�,
' −Ns ln Mj − 1

σ2
n

NsX
k=1

�
Mj

max
i=1

‖ xk − yi ‖2
�

. (9)

This last expression reduces the computational cost required to
evaluate the likelihood. The corresponding loss of performance
is not critical in most simulations that have been conducted. This
point will be illustrated in Section 5.3.3.

5. SIMULATION RESULTS

Many simulations have been carried out to evaluate the perfor-
mance of the plug-in classifier. This section focuses on a four-
class problemΩ4 = {BPSK, QPSK, 8PSK, 16QAM} which

has already been considered in the literature [1]. All constellations
have been normalized (unit energy) yielding the following signal-
to-noise ratio (SNR) in decibels

SNR = 10 log10(1/σ2
n).

5.1. Fading channel

Flat fading mobile radio channels are usually characterized by the
following frequency response:

S(f) =
1

2πfd

"
1−

�
f

fd

�2
#−1/2

I[−fd,fd](f). (10)

The output of this channel can be generated by filtering a complex
white Gaussian sequence with a low-pass Butterworth filter. The
cutoff frequency of this filter is the product of the symbol duration
T by the Doppler shiftfd due to vehicle motion. It is possible to
generate slow or fast fading channels, depending on the value of
fdT . As an example, Fig. 1 shows the output of the Butterworth
filter for two different values offd and T = 1. These figures
clearly show that a large (resp. small) value offdT induces fast
(low) fading amplitude variations.
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0
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α
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f
d
 T = 0.001

Samples

α

Fig. 1. Fading amplitude versus time forfdT = 0.01 (Top) and
fdT = 0.001 (Bottom).

The simulations performed in this paper have been obtained for
fdT = 0.001. In this case, the fading amplitudeα can be assumed
approximately constant for each group ofNs = 100 consecutive
symbolssk. However, to consider the variations of the fading am-
plitude as a function of time, the values of parameterα for different
Monte Carlo runs have been obtained by averaging the envelope of
the Butterworth filter output over100 consecutive samples. This
point is illustrated on the bottom figure 1 which compares the real
fading amplitude with its piecewise constant approximated value.

5.2. Parameter estimation

This section illustrates the performance of the MCMC-based MMSE
estimator summarized in 4.2. The unknown parameter vectorθ has
been estimated on each burst of100 symbols by running a Markov
chain with1000 samples including500 burn-in samples (i.e., the
first 500 samples generated by the MH algorithm have not been
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used for the estimation). The simulation has been conducted for
a BPSK constellation with a signal to noise ratio SNR= 5dB.
Moreover, the residual carrier frequency is constant (fr = 0 with-
out loss of generality), the random phaseφ is uniformly distributed
on the interval[−π/4, π/4] and the fading amplitude is distributed
according to a Rayleigh distribution (see 5.1 for more details).
The actual values of the unknown parameters (continuous lines)
and the corresponding estimates (circles) are depicted on Fig. 2.
These results clearly show the accuracy of the proposed estimation
methodology.

0 10 20 30 40 50
0

2

4

α

0 10 20 30 40 50
−1

0

1

φ

5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

Observation intervals

fr

Fig. 2. Unknown parameters and their estimates for fading am-
plitude (top), phase offset (middle), and residual carrier frequency
(bottom).

5.3. Classification

The performance of a classifier can be measured by the average
probability of correct classificationPcc defined by

Pcc =
1

M

MX
i=1

P [assigningx to ωi|x ∈ ωi] ,

whereM is the number of classes (hereM = 4 sinceΩ4 =
{BPSK, QPSK, 8PSK, 16QAM}). All simulations presented
in this section have been obtained from1000 trials belonging to
each classωi (i.e. a total of4000 trials). The number of symbols
in each observation interval isNs = 100.

5.3.1. Performance versus SNR

The first simulation results depicted on Fig. 3 compare the aver-
age probability of correct classification for different classifiers as
a function of SNR:

• the circle curve corresponds to the ML classifier (labeled
Ref) which assumes the parameter vectorθ is known,

• the star curve is obtained for the MCMC plug-in classifier
(labeled MCMC),

• the diamond curve stands for the classifier derived in [3]
(labeled MOM since the unknown parameter vectorθ is es-
timated by the method of moments).

The simulation scenario is similar to the example of Section 4.2
(uniform phase offset,fr = 0 and Rayleigh fading amplitude).
Note again that the ML classifier cannot be implemented in prac-
tical applications since it assumes that the parameter vectorθ is
perfectly known. Thus, it provides an upper bound of classifica-
tion performance. Fig. 3 shows that the MCMC plug-in classifier
outperforms the MOM classifier specially at high SNRs. The fig-
ure also shows that the average probability of correct classification
for the MCMC plug-in classifier approaches the optimal one pro-
vided by the ML classifier for high SNRs.

Fig. 4 shows the probability of correct classification of the
MCMC plug-in classifier for each candidate modulation (BPSK,
QPSK,8PSK, and16QAM). This figure indicates that modula-
tions with large numbers of constellation points (8PSK and16QAM)
are more difficult to classify than modulations with small numbers
of points (BPSK, QPSK) for the same SNR.
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Fig. 3. Average probability of correct classification versus SNR
for Ω in a slow flat fading scenario.
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Fig. 4. Probability of correct classification versus SNR for BPSK,
QPSK,8PSK and16QAM signals in a slow flat fading scenario.

5.3.2. Performance versusfr

Figure 5(b) and 5(a) show the effect of frequency offset (due to
inaccuracies of the local oscillators) on classification performance
for SNR = 10 and15 dB. When the frequency offset is less than
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0.2, the MCMC classifier still performs reasonably well. The clas-
sification performance drops very slightly at the frequency offset
fr = 0.3 and tends to degrade much further. However, it is impor-
tant to note that the MCMC-based classifier is more robust to fre-
quency offset than the MOM classifier particularly forfr > 0.2.
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(a) SNR= 10 dB
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(b) SNR= 15 dB

Fig. 5. Average classification performance versusfr in a slow flat
fading scenario for different SNRs.

5.3.3. Approximated Classification Rule

The last simulation results illustrate the performance of the ap-
proximate MCMC classifier which uses (9) instead of (5). Fig.
6 compares the estimated posterior distributions of the residual
carrier frequencyfr obtained by using the exact (dotted line) and
approximate (continuous line) MCMC samplers. The number of
burn-in iterations for this example is500 and the posteriors have
been estimated by using the2500 last Markov chain samples. The
two distributions are clearly in good agreement, showing that the
approximate MCMC sampler can be used if the computational cost
of the algorithm is an important issue.
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Fig. 6. Estimated posteriors forfr obtained for exact (dotted line)
and approximated (continuous line) MCMC samplers (fr = 0.2).

6. CONCLUSIONS

This paper studied the important problem of digital modulation
classification in a fading environment. The proposed classifier
estimated the parameters unknown to the receiver (phase offset,
residual carrier frequency and fading amplitude). The estimates
were then plugged into the class-conditional densities, resulting in
a so-called plug-in classifier. The proposed classifier showed good
performance. Reducing the computational complexity of the pro-
posed strategy is an important problem which is currently under
investigation.
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