
GLRT DETECTION FOR RANGE AND DOPPLER DISTRIBUTED TARGETS IN
NON-GAUSSIAN CLUTTER

Nicolas Bon(1), Ali Khenchaf(1), Jean-Michel Quellec(2), Reńe Garello(3)
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ABSTRACT

A Generalized likelihood ratio test (GLRT) is derived for
adaptive detection of range and Doppler distributed targets.
The clutter is modelled as a Spherically Invariant Random
Process (SIRP) and its texture component is range dependent
(heterogeneous clutter). We suppose here that the speckle
component covariance matrix is known or estimated thanks
to a secondary data set. Thus, unknown parameters to be es-
timated are local texture values, the complex amplitudes and
frequencies of all scattering centers. The proposed detector
assumesa priori knowledge on the spatial distribution of the
target and has the precious property of Constant False Alarm
Rate (CFAR) with the assumption of a known speckle cova-
riance matrix or by the use of frequency agility.

1. INTRODUCTION

A High Range Resolution radar (HRR) can resolve a tar-
get into a number of scattering centers, depending on the
range extent of the target and the range resolution of the ra-
dar. The range resolution is proportional to the inverse of the
emitted bandwidth [1]. Different waveform can be used to
achieve a high range resolution via pulse compression tech-
niques. One may cite the chirp waveform which pulses are
broadband thanks to a linear frequency-modulation, and the
step frequency waveform that emits narrow band pulses cen-
tered on different frequencies to achieve a synthetic broad
band.

In the last few years, many results have been obtained
in radar detection with HRR. In particular, radar detection
of distributed targets in white Gaussian noise [2], in Gaus-
sian disturbance of unknown covariance matrix [3][4] and
in non-Gaussian disturbance [5][6]. All these contributions
show that a properly designed detector enables significant
performances improvement which is based on several fac-
tors. Firstly, increasing the range resolution of the radarre-
duces the energy of the clutter in each range cell and se-
condly, resolved scatterers introduce less fluctuation than an
unresolved point target.

However, in HRR mode, clutter statistics can’t be model-
led as Gaussian random process anymore due to the observa-
tion of spikes. The distribution is usually modelled as a com-
pound Gaussian vector and more precisely, as a spherically
invariant random vector (SIRV) [7]. The clutter vector is then

the product of two components. A rapid fluctuation com-
ponent so-called speckle which decorellation time is about
10ms and which can be decorrelated with the use of fre-
quency agility. And a slow fluctuation component so-called
texture that exhibits much longer decorrelation [8] time and
which is not affected by frequency agility.

We propose here a detector which is designed for range
and Doppler distributed targets in non-Gaussian clutter. Re-
solving the target on the Doppler axis enables to reduce the
fluctuation of the scatterers with respect to a detector desi-
gned for range-only distributed targets. Moreover it enables
to separate the target and clutter spectrum. This paper is or-
ganized as follows : in section 2, problem statement will be
formulated and clutter and signal models will be described.
The GLRT will be derived in section 3, CFAR property and
false alarm probability will be discussed in section 4 and sec-
tion 5 will be devoted to several results of the application of
our detector on synthetic data.

2. PROBLEM STATEMENT AND SIGNAL MODEL

We assume that the target is spatially distributed overL
range cells. The detection problem can thus be formulated as
follows :

H0 : zr = cr , r = 1. . .L

H1 : zr = xr +cr , r = 1. . .L (1)

wherezr = (zr(0),zr(1), . . . ,zr(N−1)t . The observations are
supposed to be independent between each range cell. TheH0
hypothesis corresponds to the only presence of clutter and
theH1 hypothesis to the presence of clutter and target.

2.1 Clutter subspace

The cluttercr =
√

τrsr is modelled as a Spherically In-
variant Random Vector (SIRV) so thatsr = C N (0,M), r =
1. . .L. sr is commonly namedspecklecomponent, which co-
variance matrixM is here supposed to be known, estimated
or identity with the use of frequency agility.τr , so-calledtex-
ture, is a real positive random process. This representation
is widely used to model the radar clutter [8][7][5][9]. The
multivariate distribution of the clutter vector is given condi-
tionally to the texture by :

pcr |τr (cr |τr) =
1

(πτr)N detM
exp

(

−cH
r M−1cr

τr

)

(2)



2.2 Signal subspace

The signal vectorxr = (xr(0),xr(1), . . . ,xr(N − 1))t in
each range cell, is the sum of the contribution ofpr scatte-
rers so that :

xr(n) =
pr

∑
k=1

ar,k exp
(

jφr,k(n)
)

,n = 0. . .N−1 (3)

Thus, the signal in each range cell can be expressed with ma-
trix formulation as :

xr = Erar (4)

wherear = (ar,1,ar,2, . . . ,ar,pr )
t is the vector of complex am-

plitudes of the scatterers in the range cell. The signal vector
xr is equivalent to the so-called Gaussian linear model. This
signal model has been often used in radar detection problem
but also in array processing scenarios, see [9] for references.
The steering matrixEr is expressed as :

Er =











1 1 . . . 1
ejφr,1(1) ejφr,2(1) . . . ejφr,pr (1)

...
...

ejφr,1(N−1) ejφr,2(N−1) . . . ejφr,pr (N−1)











(5)

It is assumed that the phase variation is linear so that :

φr,k(n) = 2π fr,kn,n = 0. . .N−1 (6)

With these definitions, and assumingar , r = 1, . . . ,L is
deterministic, the observed signal distribution in each range
cell is zr|τr ,H1

∼ C N (Erar ,τrM). For the following deve-
lopments, is is useful to consider the signal vector :

xr = Urbr , r = 1. . .L (7)

where, taking the singular value decomposition,Er =
UrSrV

H
r , r = 1. . .L, Ur is theN× pr unitary matrix of left

singular vectors,Sr is the pr × pr diagonal matrix of non-
zero singular values andVH

r is the pr × pr diagonal unitary
matrix of right singular vectors.

3. GLRT DERIVATION

3.1 Optimal detector and GLRT

Considering the independence hypothesis of the range
cells, conditionally to the values of the texture component,
the scatterers amplitudes and the steering matrix, the joint
density underH1 is :

pz1:L|τ1:L,b1:L,U1:L,M,H1
(z1, . . . ,zL|τ1:L,b1:L,U1:L,M)

=
L

∏
r=1

exp
(

−(zr −Urbr)
HM−1(zr −Urbr)/τr

)

(πτr)N det(M)
(8)

and underH0 :

pz1:L|τ1:L,M,H0
(z1, . . . ,zL|τ1:L,M)

=
L

∏
r=1

1
τN

r πN det(M)
exp

(

−zH
r M−1zr

τr

)

(9)

According to the Neyman-Pearson criterion, and assuming
that the signal subspaceUr , r = 1. . .L and clutter covariance

matrix are known, the optimal detector is the likelihood ratio
test which is obtained by integrating over all the values of the
texture components :

Λ(z1:L) =
Eτ1:L{pz1:L|H1

(z1, . . . ,zL|τ1:L,H1)}
Eτ1:L{pz1:L|H0

(z1, . . . ,zL|τ1:L)
(10)

=
∏L

r=1
∫ ∞

0
exp(−(zr−Urbr )

H
M

−1(zr−Urbr )/τr)
τN
r det(M)

pτr (τr)dτr

∏L
r=1

∫ ∞
0

1
τN
r det(M)

exp
(

−zH
r M−1zr

τr

)

pτr (τr)dτr

We do not know the multivariate distribution of the vectors
br , r = 1. . .L, we have then modelledbr , r = 1. . .L as an
unknown deterministic vector. In the same way, the texture
component distribution can’t be perfectly known or estima-
ted and the presence of the integrals in the previous equation
entails an heavy computational burden. We then propose to
model it also as a deterministic vector and use a sub-optimum
approach based on the generalized likelihood ratio test where
the unknown parameters are replaced by their ML-estimates.
We assume in this paper that the clutter covariance matrix
is known (or estimated thanks to a secondary data set). The
GLR is expressed as :

ΛGLRT(z1:L) = max
Ur ,br ,τr

Λ(z1:L|Ur ,br ,τr) (11)

= Λ(z1:L|Ûr , b̂r , τ̂r|H1
, τ̂r|H0

)

=
pz1:L|H0

(z1:L − Û1:Lb̂1:L|τ̂1:L|H1
,H0)

pz1:L|H0
(z1:L|τ̂1:L|H0

,H0)

=

∏L
r=1

1
τ̂N
r|H1

exp
(

− (zr−Ûr b̂r )
H
M

−1(zr−Ûr b̂r )
τ̂r|H1

)

∏L
r=1

1
τ̂N
r|H0

exp
(

−zH
r M−1zr

τ̂r|H0

)

3.2 Parameter estimation

The ML estimation ofUr , r = 1. . .L and consequently of
the steering matrixEr , r = 1. . .L is not a straightforward pro-
blem. Indeed, no closed-form expression exists and numeri-
cal methods must be used. We have studied an EM-solution
which enables to give an ML estimate but which computa-
tional complexity is prohibitive. That’s the reason why we
use spectral analysis methods such as the periodogram, AR
models or high resolution spectral estimators which offers
a good Doppler resolution. The estimation of Doppler fre-
quencies is not discussed here but performances results of
the detector with the use of superresolution spectral estima-
tion methods are plotted in section 5.

After estimating the steering matrixesEr , r = 1. . .L, we
are able to give the ML-estimate of the scatterers complex
amplitudesbr , r = 1. . .L and the texture componentτr , r =
1. . .L. The ML-estimate ofbr , r = 1. . .L underH1 hypothe-
sis is :

b̂r = argmax
br

pzr−Urbr |τr ,H0
(zr −Urbr |τr ,H0)

= (UH
r M−1Ur)

−1UH
r M−1zr , r = 1. . .L (12)

and the ML-estimate of the textureτ1...L underH0 andH1 are



respectively :

τ̂r|H0
= argmax

τr

pzr |τr ,H0
(zr |τr ,H0)

=
zH

r M−1zr

N
(13)

and, with (12) :

τ̂r|H1
= argmax

τr

pzr |τr ,H1
(zr |τr ,H1)

=
zH

r (M−1−Qr)zr

N
(14)

where

Qr = M−1Ur(U
H
r M−1Ur)

−1UH
r M−1 (15)

By injecting the ML-estimate of (12), (13) and (14) in
(11), the generalized likelihood ratio test is reexpressedas :

Λ(Z) =
∏L

r=1(z
H
r M−1zr)

N

∏L
r=1(z

H
r (M−1−Qr)zr)N

(16)

and, in an equivalent way, the generalized log-likelihood ra-
tio is :

lnΛ(Z) = N
L

∑
r=1

ln

(

zH
r M−1zr

zH
r (M−1−Qr)zr

)

(17)

It’s interesting to note that the caser = 1 and steering
matrix reducing to a steering vector gives a GLRT expres-
sion identical to that given in [9] in the case of a point tar-
get in a compound Gaussian clutter. Moreover, considering a
range-only distributed target, i.e. only with a steering vector
per range cell, we find an equivalent expression to the one
derived in [5].

4. FALSE ALARM PROBABILITY AND
THRESHOLD ASSESSMENT

A detector owns the constant false alarm rate property
(CFAR) when the detection threshold is independent of the
clutter power. More generally, in the adaptive detection li-
terature, the CFAR property refers to the clutter covariance
matrix [10]. The derived detector is CFAR. Indeed, with the
knowledge hypothesis of the covariance matrixM (estimated
thanks to a secondary data set or being identity with an agile
waveform), the GLRT is independent of the texture value.
This is an important property which makes the detector adap-
tive. However, as we show in the following development, the
detection threshold depends on the steering matrix and more
precisely, of its rank i.e. the signal subspace dimension orthe
number of components.

We define the false alarm probability so that the log-
likelihood ratio is higher than a threshold underH0 :

Pf a = Pr{lnΛ(Z|H0)〉η} (18)

We then distinguish two cases :
– For L = 1, we rewrite the log-likelihood ratio so that

the numerator and denominator are independent :

Γ = lnΛ(Z|H0,L = 1) = N ln

(

1+
zHQz

zH(M−1−Q)z

)

(19)

UnderH0, z= c. With the notation ˜c the whitened clut-
ter complex Gaussian vector, zero-mean and with iden-
tity covariance matrix,z =

√
τM1/2c̃. It’s shown in

[11] that the quadratic form ˜cHAc̃ is chi-2 distributed
with 2p degrees of freedom, p = rank ofA, if and only
if A is idempotent, i.e.A2 = A. With this property,
the numerator of the ratio into brackets in (19) is chi-
2 distributed with 2p degrees of freedom. Indeed,Q is
the orthogonal projector onto the signal subspace span-
ned by the columns ofU of dimensionp and is thus
idempotent. In the same way, the denominator of the
GRL is expressed byzH(M−1−Q)z = τ c̃H(I−Q′)c̃,
whereQ′ is the orthogonal projector onto the subspace
spanned by the columns of the whitened version ofU,
i.e. M−1/2U. I−Q′ is then the orthogonal projector
onto the clutter subspace and its rank isN− p. Conse-
quently the denominator of the ratio in (19) is chi-2
distributed with 2(N− p) degrees of freedom. Conse-
quently :

zHQz

zH(M−1−Q)z
∼ χ2(2p)

χ2(2N− p)
(20)

∼ p
N− p

F (2p,2(N− p))

where F(2p,2(N − p)) is the well-known F-
distribution. The probability density function of
the log-likelihood ratio underH0 is then, thanks to the
jacobian transformation :

pΓ(Γ)= f1(Γ)=
p

N− p
eΓF2p,2(N−p)

(

N− p
p

(eΓ −1)

)

(21)
– For L > 1, the log-likelihood ratio distribution is the

convolution of previous distribution :

pΓ(Γ) = f1(Γ)∗ f2(Γ)∗ . . . fL(Γ) (22)
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FIG. 1 – false alarm probability with respect to the detection
threshold for L=1 and N=8.

The figure 1 represents the false alarm probability with
respect to the threshold fixed forN = 8, L = 1 and different
values of the signal subspace dimensionp.



5. SIMULATION RESULTS

We present in this section the performances of our detec-
tor on synthetic signals in different scenarios. We compare
it with the point target detector proposed in [9] and with the
range-only distributed target detector of [5].

We consider a synthetic target which is distributed over
L = 4 range cells and in each range cell, the scatterers are
located at different normalized Doppler frequencies as repre-
sented in table 1. We fix unitary amplitudes for each scatterer.

TAB . 1 – Doppler frequencies of the scatterers.
cell # 1 2 3 4

frequencies {0.1} {0.1,0.2} {0.1,0.2,0.3} {0.1,0.2}

We resort to Monte-Carlo simulations to estimate the de-
tection probability based on 100/Pd independent trials. The
detection threshold is computed by inverting the distribution
given in (22). The local value of the textureτr , r = 1. . .L is
supposed to follow a gamma distribution :

p(τr) =
2bν

Γ(ν)
τ2ν−1

r exp(−b2τ2
r ), r = 1. . .L (23)

whereb controls the mean of the distribution andν controls
the deviation with respect to the Gaussian distribution. The
higherν is, the more Gaussian the distribution is. The clutter
is then K-distributed. We fix in the followingν = 0.5. The
speckle covariance matrix corresponds to a Gaussian spec-
trum of 0.2 mean value and of 0.05 standard deviation. At
last, we suppose that if the resolution is increased byL, then
the clutter power in each range cell is divided byL with res-
pect to a configuration where the target is fully contained in
one range cell. The target total energy isE = ∑L

r=1 ||Erar ||2
and the signal to clutter ratio is :

SCR=
∑L

r=1(Erar)
HM−1(Erar)

Nσ2 (24)

whereσ2 is the clutter total energy.
The figure 2 presents the detection probability using the

detector proposed, using the point target detector (conside-
ring that the radar resolution is decreased by a factorL) and
using the range-only distributed target detector. The steering
vectors of these last detectors are fixed on the normalized fre-
quency 0.1, corresponding to thebaseof the target. The stee-
ring matrixes are known. We observe a performance gain of
12 dB with respect to the point target detector and approxi-
matively 7 dB to the range-only distributed target detector
(this gain is estimated at a detection probability of 0.5).

The figure 3 shows that the probability of detection in-
creases with the parameterN, corresponding to the number
of pulses integrated. The figure 4 plots the detection proba-
bility for different ν : ν = 1, ν = 0.5, ν = 0.3 andν = 0.2.
We can note that the detection probability increases when the
clutter becomes more spiky, especially for low SCR. This re-
sult about the influence ofν is also observed in [5] and [6].

In previous simulations steering matrixes or steering vec-
tors were assumed known. In a realistic scenario, thisa priori
knowledge is obviously not always straightforward and the
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FIG. 2 – Comparison of the proposed detector designed for
range and Doppler distributed target with respect to the point
target detector and range-only distributed target detector for
N = 8, Pf a = 10−4.
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FIG. 3 – Influence of the number of integrated pulseN on the
detection probability.Pf a = 10−4.
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signal subspace must be estimated. We have proposed in sec-
tion 3.2 to use superresolution methods to estimate the Dop-
pler frequencies of the signal components. These methods
need the knowledge of the signal subspace dimension i.e. the
number of signal components. To do so, we use Rissanen’s
MDL [13] criterion. We use LS-ESPRIT [12] that enables to
give an estimate of the Doppler frequencies without having
to search over the maxima of a function like MUSIC algo-
rithm. In figure 5, the detection probability is plotted using
ESPRIT algorithm for estimation. In order to save simula-
tion time, the target considered is contained in one range
cell and composed of three unitarian scattering points of res-
pective normalized Doppler frequencies{0.1,0.2,0.3}. The
threshold computed corresponds to a wantedPf a = 10−2.
The data length isN = 64 samples in order to limit the error
on frequency estimation. The correlation matrix is estimated
thanks to forward-backward averaging or spatial smoothing
technique. In order to take into account the frequency estima-
tion error, we define the detection probability as the probabi-
lity that the GLRT is higher than the threshold defined earlier
and that the frequency estimation error is lower than the ar-
bitrarily fixed value 1/N, corresponding to the periodogram
frequency resolution. Fig 5 shows that estimating the steering
matrix yields a detection loss.

FIG. 5 – Comparison of the detector on target composed of
3 frequencies in one range cell in the case of known frequen-
cies (solid curve) and ESPRIT estimated (dashdot curve).
Pf a = 10−2, N = 64,ν = 0.5, L = 1.

6. CONCLUSION

We have proposed in this paper an adaptive detector for
range and Doppler spread targets in non-Gaussian distur-
bance. The clutter is modelled as a spherically invariant ran-
dom process (SIRP) with known or estimated speckle cova-
riance matrix. The target steering matrix is also assumed to
be known or estimated with spectral estimators such as ES-
PRIT. We consider that the local values of the texture com-
ponent and the complex amplitudes of the targets are deter-
ministic unknown parameters and are ML estimated so that
the GLRT can be derived. We have shown that our detector,
especially designed for range and Doppler distributed target
enables performances enhancement with respect to low reso-
lution detection or range-only target designed detectors.

Further research will be lead on evaluating the influence
of clutter correlation and the influence of thermal noise added
to the clutter. It would also be interesting to derive a detector
without the range independency assumption of the different
range cells.
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