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ABSTRACT

In this paper, we consider the problem of channel tracking
for a MIMO communication system which uses orthogonal
space-time block codes (OSTBCs) as the underlying space-
time coding scheme. We propose a two-step tracking algo-
rithm. As the first step, Kalman filtering is used to obtain
an initial channel estimate for the current block based on the
channel estimates obtained for previous blocks. Then, in the
second step, the so-obtained initial channel estimate is re-
fined using a decision-directed iterative method. We show
that due to specific properties of OSTBCs, both the Kalman
filter and the decision-directed algorithm can be significantly
simplified. Simulation results show that the proposed track-
ing method can provide accurate enough channel estimates.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
and space-time coding have been the focus of extensive re-
search efforts. Among different space-time coding schemes
presented in the literature, orthogonal space-time block
codes (OSTBCs) [1], [2] are of particular interest because
they achieve full diversity at an affordable receiver complex-
ity. Indeed, given the MIMO channel, the maximum likeli-
hood (ML) optimal receiver for OSTBCs consists of a linear
receiver followed by a symbol-by-symbol decoder. Also, it
has recently been shown in [3] that for majority of OSTBCs,
the MIMO channel is blindly identifiable. However, this in-
teresting property of OSTBCs is based on the assumption
that the channel is fixed during a long enough time interval.
In practice, the channel may however be time-varying due
to the mobility of the transmitter and/or receiver, as well as
due to the carrier frequency mismatch between the transmit-
ter and receiver. Therefore, channel tracking is an essential
processing in these cases.

Kalman filtering based channel tracking has been studied
in [4] in application to channel tracking for MIMO commu-
nication systems which use Alamouti scheme as the underly-
ing OSTBC. In this paper, we extend the result of [4] for any
type of OSTBCs and show that Kalman filtering can be sig-
nificantly simplified due to the specific structure of OSTBCs.
Unlike [4], we assume that the channel is fixed during trans-
mission of each block of data, and it can only change between
blocks. Based on such an assumption, we develop a two-step
channel tracking algorithm. In the first step, Kalman filtering
is used at the beginning of each block to track the channel.
In the second step, to improve the quality of the channel es-
timate obtained by Kalman filtering, we propose a simple
iterative channel estimation technique. This iterative method
is in fact a decision-directed algorithm and it consists of se-
quential use of a linear receiver and a linear channel estima-
tor.

2. BACKGROUND

Consider a MIMO system withN transmitter andM receiver
antennas. In a time-varying flat-fading channel scenario, the
received signal, at timet, can be written as

y(t) = x(t)H(t)+v(t) (1)

whereH(t) is theN×M channel matrix with its(i, j) ele-
ment equal to thetime-varyingchannel coefficient between
the ith transmit antenna and thejth received antenna,y(t) is
the 1×M vector of received data, andx(t) is the 1×N vector
of transmit data.

We consider a block transmission scheme and assume
that within the block periodT, the channel is fixed, i.e., the
channel is assumed to bequasi-static. However, between
different blocks the channel can change. Based on such an
assumption, thenth received block can be written as

Y(n) = X(n)H(n)+V(n) (2)

where

Y(n) , [yT(nT−T +1) · · · yT(nT)]T (3)

X(n) , [xT(nT−T +1) · · · xT(nT)]T (4)

V(n) , [vT(nT−T +1) · · · vT(nT)]T (5)

are thenth block of the received signals, transmitted signals,
and noise, respectively, and(·)T denotes the transpose opera-
tor. The noise is assumed to be zero-mean complex Gaussian
and spatio-temporally white with varianceσ2

v /2 per real di-
mension.

In space-time block coding, the matrixX(n) is a mapping
which transforms a block of complex symbols to aT ×N
complex matrix. Hence, we hereafter replaceX(n) with
X(s(n)) wheres(n) is thenth symbol vector of lengthK. Let
us denotes(n) ass(n) = [s1(n) s2(n) · · · sK(n)]T . TheT×N
matrix X(s(n)) is called an OSTBC [1], [2] if all elements
of X(s(n)) are linear functions of theK complex variables
{sk(n)}K

k=1 and their complex conjugates, and if, for any ar-
bitrarys(n), X(s(n)) satisfies:

XH(s(n))X(s(n)) = ‖s(n)‖2IN (6)

whereIN is theN×N identity matrix,‖ · ‖ is the Euclidean
norm, and(·)H denotes Hermitian transpose. It follows from
the definition of OSTBCs that the matrixX(s(n)) can be
written as

X(s(n)) =
K

∑
k=1

(CkRe{sk(n)}+DkIm{sk(n)}) (7)
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where Re{·} and Im{·} denote the real and imaginary parts,
andCk andDk matrices are defined as

Ck = X(uk) and Dk = X( juk) (8)

whereuk is thekth column of the identity matrixIK and j =√
−1. Let us define the “underline” operator for a matrixP

asP
∆
=

[
vecT{Re(P)} vecT{Im(P)}

]T
where vec{·} refers

to the vectorization operator stacking all the columns of a
matrix on top of each other. Using (7), we rewrite (2) as

ỹ(n) , Y(n) = A(H(n)) s̃n + ṽn (9)

where the following definitions ˜sn , s(n) andṽn , V(n) are
used and the 2MT ×2K real matrixA(H(n)) is given by

A(H(n)) = [C1H(n) . . .CKH(n) D1H(n) . . .DKH(n)].

It has been shown that for any channel matrixH(n), the
matrixA(H(n)) satisfies the so-calleddecouplingproperty,
i.e., its columns are orthogonal to each other and they have
identical norms [7]. More specifically, it satisfies:

AT(H(n))A(H(n)) = ||H(n)||2FI2K (10)

where ||.||F denotes the Frobenius norm. Let us define

the 2MN× 1 time-varying channel vectorh(n) ash(n)
∆
=

H(n). With a small abuse of notation, we hereafter replace
A(H(n)) with A(h(n)). Therefore, we rewrite (10) as

AT(h(n))A(h(n)) = ||h(n)||2I2K . (11)

Since A(h(n)) is linear in h(n), we can write
vec{A(h(n))} = Φh(n) where Φ is a unique
4KMT × 2MN matrix whosekth column, [Φ]k is given
by [Φ]k = vec{A(ek)} and ek is the kth column of the
identity matrixI2MN.

Note that the matrixΦ can be written asΦ =
[ΦT

1 · · · ΦT
2K ]T where each sub-matrixΦk (k = 1, . . .2K) de-

scribes the linear relationship between thekth column of
A(h(n)) andh(n), i.e.,

[A(h(n))]k = Φkh(n) (12)

where[·]k denotes thekth column of a matrix.
Given the channel vectorh(n), the optimal ML de-

coder for OSTBCs consists of a linear receiver followed by
symbol-by-symbol decoder [8]. Indeed, the linear receiver
computeŝ̃sn, the estimate of ˜sn, as

ˆ̃sn =
1

‖h(n)‖2A
T(h(n)) ỹn. (13)

The symbol-by-symbol decoder then builds ˆs(n), the esti-
mate of vectors(n), asŝ(n) = [IK jIK ] ˆ̃sn . Thekth element of
ŝ(n) is compared with all the points in the constellation cor-
responding tosk(n) and the closest point to thekth element
of ŝ(n) is accepted as thekth decoded symbol.

Note however that implementation of the ML decoder
requires the knowledge of the time-varying channel. If the
channel is fixed, one can use training to estimate the chan-
nel. However, in practice, the channel is time-varying, and
hence tracking of the MIMO channel is required.

Without assuming any model for the MIMO channel,
joint channel tracking and symbol detection is an ill-posed
problem. Fortunately, in many practical scenarios, the wire-
less channels can be modeled with a few parameters. It has
been shown in [5] that the first-order autoregressive (AR)
model can be used as a sufficiently precise method to de-
scribe the time-varying behavior of wireless channels. Based
on this model, we assume that the channel variation between
adjacent blocks is modeled as a first order AR model, i.e.,

H(n) = αH(n−1)+W(n) (14)

whereW(n) is anN×M noise matrix which is assumed to be
zero-mean complex Gaussian with independent entries and
variance ofσ2

w/2 per real dimension. The parameterα is
a complex scalar that can be estimated using the method of
[6], and hence, it is herein assumed to be known. The noise
varianceσ2

w andα are related asσ2
w = σ2

h (1− |α|2) where
σ2

h is the variance of each element ofH(n) and| · | denotes
the amplitude of a complex number.

3. KALMAN FILTER BASED CHANNEL
TRACKING

In this Section, we study the problem of channel tracking via
Kalman filtering. We propose a two-step channel tracking al-
gorithm. In the first step of this algorithm, Kalman filtering
is used to obtain an initial channel estimate for the current
block based on the channel estimates obtained for the pre-
vious blocks. This initial channel estimate is then refined by
using an iterative decision-directed technique which involves
a linear ML channel estimator based on the decoded trans-
mitted symbols. In fact, the linearity of such an ML channel
estimator follows from the specific properties of OSTBCs.
We will also show that due to the specific structure of OS-
TBCs, Kalman filtering based channel tracking can be sig-
nificantly simplified. To mathematically derive the two-step
channel tracking algorithm, we rewrite (9) as

ỹn = B(s̃n)h(n)+ ṽn (15)

where the 2MT ×2MN real matrixB(s̃n) is defined as

B(s̃n) , [A(e1)s̃n A(e2)s̃n . . . A(e2MN)s̃n]. (16)

The following Lemma plays an important role in simplifying
the forthcoming Kalman filtering algorithm.

Lemma 1: The matrixB(s̃n) has orthogonal columns and
the norm of each column is equal to‖s(n)‖2, i.e., it satisfies:

BT(s̃n)B(s̃n) = ‖s(n)‖2I2MN . (17)

Proof: See [10]. �
It follows from (15) and (17) that given ˜sn, the ML esti-

mate of the channel vectorh(n) can be obtained as

ĥML (n) =
1

‖s(n)‖2B
T(s̃n)ỹn. (18)

This is an important observation because it implies that if the
information symbols were available, the optimal ML channel
estimation would involve a linear estimator as in (18). How-
ever, in practice, the information symbols are not available
and need to be estimated. To overcome this problem, one can
use a decision-directed channel estimation and symbol detec-
tion algorithm. Given an initial channel estimateĥ(0)(n), one
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can replaceh(n) in (13) with ĥ(0)(n) and obtain an estimate

for s̃n, say ˆ̃s(0)
n . This estimate of ˜s(n) will, in turn, be used

in (18) instead of ˜s(n) to obtain a new estimate forh(n),
sayĥ(1)(n). This new channel estimate will be used in (13)
instead ofh(n) to obtain a new estimate ofs(n). This pro-
cedure is repeated until the normalized difference between
two consecutive channel estimates is negligible. This itera-
tive procedure can be viewed as a decision-directed channel
estimation scheme. The accuracy of this scheme depends on
the availability of a precise enough initial channel vectores-
timateĥ(0)(n). We propose to use Kalman filtering to obtain
such a precise initial channel estimate,ĥ(0)(n), based on the
channel estimates obtained for the previous blocks.

In what follows, we discuss the details of the Kalman fil-
tering technique when applied to our MIMO channel track-
ing problem. We show that using Lemma 1, the Kalman filter
can be simplified significantly. To show this, we use (15) as
the observation model of the Kalman filter [9]. Note that the
data model in (15) is real-valued. To obtain a real-valued
state transition equation, we can rewrite (14) as

h(n) = Fh(n−1)+w(n) (19)

where

F
∆
=

[

Re(α)IMN −Im(α)IMN
Im(α)IMN Re(α)IMN

]

(20)

andw(n) = W(n) is the real-valued process noise with co-

variance matrixQ = (σ2
w/2)I2MN. We can now use (19)

as the real-valued state transition equation required for the
Kalman filter.

The Kalman filtering problem for channel tracking in
OSTBC-based MIMO communication can now be formally
stated as it follows: Given the measurement-to-state matrix
B(s̃n), use the observed data ˜yn to find the minimum mean
squared error (MMSE) estimate of the state vectorh(n) for
eachn≥ 1.

Given the estimate of the state at timen−1,h(n−1|n−
1) and the associated error covariance matrixP(n−1|n−1),
the Kalman filter [9] is used to obtain the estimate of the
state at timen, i.e., h(n|n) and the associated error covari-
ance matrixP(n|n). The Kalman filtering algorithm can be
summarized as it follows:

h(n|n−1) = Fh(n−1|n−1) (21)

P(n|n−1) = FP(n−1|n−1)FT +Q (22)
ˆ̃yn = B(s̃n)h(n|n−1) (23)

ν(n) = ỹn− ˆ̃yn (24)

Pν (n) = R+B(s̃n)P(n|n−1)BT(s̃n) (25)

G(n) = P(n|n−1)BT(s̃n)P
−1
ν (n) (26)

h(n|n) = h(n|n−1)+G(n)ν(n) (27)

P(n|n) = P(n|n−1)−G(n)Pν(n)GT(n) (28)

whereh(n|n−1) is the predicted state,P(n|n−1) is the co-
variance matrix of the predicted state,ˆ̃yn is the predicted ob-
servation,ν(n) is the innovation process,Pν (n) is the in-
novation covariance matrix,G(n) is the Kalman gain [9],
andR = E{ṽnṽ

T
n } is the covariance matrix of the measure-

ment noise ˜vn. As we assumed that the measurement noise
is spatio-temporally white with a variance ofσ2

v /2 per real
dimension, thereforeR = (σ2

v /2)I2MT holds true.

The following Lemma uses the result of Lemma 1 to
reduce the computational complexity of findingP−1

ν (n) in
(26).

Lemma 2: IfP(n− 1|n− 1) is a diagonal matrix, then,
P(n|n−1) in (22) andP(n|n) in (28) are also diagonal, i.e.,
if

P(n−1|n−1)= δn−1I2MN (29)

then
P(n|n−1) = βnI2MN

and
P(n|n) = δnI2MN

where
βn = δn−1|α|2 +(σ2

w/2)

and
δn = σ2

v βn/(2‖s(n)‖2βn + σ2
v ).

Proof: Substituting (29) into the predicted state covari-
ance in (22), we can rewrite it as

P(n|n−1) = δn−1FFT +Q = |α|2δn−1I2MN +Q

=

(

|α|δ 2
n−1 +

σ2
w

2

)

I2MN. (30)

Inserting (30) into (25) and using matrix inversion lemma,
P−1

ν (n) can be written as

P−1
ν (n) = R−1−R−1B(s̃n)

(

BT(s̃n)R
−1B(s̃n)+P−1(n|n−1)

)−1
BT(s̃n)R

−1

=
2

σ2
v
I2MT − 4

σ4
v
B(s̃n)

(
2

σ2
v
BT(s̃n)B(s̃n)+

1
βn

I2MN

)−1

BT(s̃n)

=
2

σ2
v
I2MT −

(
4βn

2‖s(n)‖2βnσ2
v + σ4

v

)

B(s̃n)B
T(s̃n)

(31)

where we have used (17). Inserting (31) into (26), we obtain
that

P(n|n) =

(
σ2

v βn

2‖s(n)‖2βn + σ2
v

)

I2MN . (32)

The proof is complete. �
Based on Lemma 2, ifP(0|0) is initialized as a diagonal

matrix,P(n|n−1), P−1
ν , andP(n|n) always take the form of

(30), (31), and (32), respectively.
It is also noteworthy that using (30) and (31), the Kalman

filter gainG(n) in (26) can be simplified as

G(n) = βn

(
2

σ2
v
− 4βn‖s(n)‖2

2‖s(n)‖2βnσ2
v + σ4

v

)

︸ ︷︷ ︸

,µn

BT(s̃n) . (33)

Using (23), (24) and (33), we can simplify (27) as

h(n|n) = h(n|n−1)+ µnB
T(s̃n)

(

ỹ(n)−B(s̃n)h(n|n−1)
)

= (1− µn‖s(n)‖2)h(n|n−1)+ µnB
T(s̃n)ỹ(n) (34)
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Therefore, the Kalman filtering algorithm can be simpli-
fied as it follows:

h(n|n−1) = Fh(n−1|n−1) (35)

βn = δn−1‖α‖2 +
σ2

w

2
(36)

µn = βn

(
2

σ2
v
− 4βn‖s(n)‖2

2‖s(n)‖2βnσ2
v + σ4

v

)

(37)

ĥ(0)(n) , h(n|n) =

(1− µn‖s(n)‖2)h(n|n−1)+ µnB
T(s̃n)ỹ(n) (38)

δn = σ2
v βn/(2‖s(n)‖2βn + σ2

v ) . (39)

The so-obtained̂h(0)(n) is then used in the aforementioned
decision-directed iterative procedure to obtain a more accu-
rate channel estimate.

Remark 1:Note that the simplified Kalman filter requires
the knowledge of the symbol vector ˜sn (or s(n)). However,
the primary objective is to decodes(n). To overcome this
issue, we propose to replace ˜sn in Kalman filter equations
(35)-(39) by its estimate which is obtained as

ˆ̃sn =
1

‖h(n|n−1)‖2A
T(h(n|n−1))ỹn (40)

Remark 2:To initiate the whole process, we also need to
obtain an accurate enough channel estimateĥ(0). To obtain
such an initial channel estimate, one can use a training block
s(0) which is known to the receiver. At the beginning of the
tracking process, the receiver can then use (18) to obtain the
ML estimate ofh(0) as

ĥ(0) =
1

‖s(0)‖2B
T(s̃0)ỹ0 . (41)

Remark 3: To avoid error propagation, we need to re-
peat training once in a while. The training repetition period
(TRP) determines the bandwidth efficiency of system and it
is defined as the number of blocks between two consecutive
training blocks.

4. SIMULATION RESULTS

We consider a MIMO system with the full-rate real OS-
TBC of Tarokh (i.e., eqn. (27) of [2] with real BPSK sym-
bols) with K = M = T = 4 and N = 3. The signal-to-
noise ratio (SNR) is defined asσ2

h/σ2
v . In each simula-

tion run, the elements ofH(n) are generated based on (14),

whereα = 0.998e
j π
36 is chosen andσ2

w is obtained from
σ2

w = σ2
h (1−|α|2). We compare our Kalman filtering based

method with the coherent ML receiver (which has the perfect
knowledge of the time-varying channel), as well as with a
channel estimation method which uses the predicted channel
estimate as the initial channel estimate for the iterative deci-
sion directed method. To compare the performance of these
two techniques in terms of channel estimation accuracy, we
use normalized mean squared error (NMSE) of the channel
estimates defined as

NMSE= E

{

‖H(n)− Ĥ(n)‖2

‖H(n)‖2

}

.

Figure 1 shows the real part of the true and the estimated
channel coefficients versus block indexn. In this figure, SNR
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Figure 1: The real parts of true channel coefficients (solid
lines) and the estimated channel coefficients (dashed lines),
obtained from our Kalman filtering based method, versus
block indexn for SNR = 10 dB and TRP = 10; second exam-
ple.

= 10 dB and TRP = 10 are chosen. Figure 2 shows the NMSE
of channel estimates versus block indexn, for different meth-
ods and for two different values of SNR. In this figure TRP
= 10 blocks is chosen. Figure 3 shows the symbol error rates
(SERs) of different methods, versus SNR, for different val-
ues of TRP. In this figure, we have also plotted the SER for
the (clairvoyant) coherent ML receiver which is aware of the
time-varying channel. It is noteworthy that the latter receiver
does not correspond to any practical application and it is con-
sidered here only for the sake of comparison.

As can be seen from Figure 1, our Kalman filtering based
channel tracking technique provides channel estimates that
are quite close to the true channel coefficients. Figure 2
shows that our proposed channel tracking algorithm signif-
icantly outperforms the prediction based method. Interest-
ingly enough, the NMSE of channel estimates for the predic-
tion based method is not improved as the number of received
blocks increases while the NMSE of channel estimates for
our proposed technique shows a continuous improvement as
the number of received blocks is increased.

In terms of SER, Figure 3 shows that the performance of
our channel tracking method can be quite close to that of the
coherent ML receiver. Indeed for a TRP = 10, the SER of our
technique can be within 1 dB from the coherent ML receiver.

5. CONCLUSIONS

In this paper, we studied the problem of MIMO channel
estimation for communication systems that use orthogonal
space-time block codes as the underlying space-time coding
scheme. For such systems, we proposed a two-step channel
tracking algorithm. As the first step, Kalman filtering is used
to obtain an initial channel estimate, for each block, based
on the channel estimates obtained for the previous blocks. In
the second step, an iterative decision-directed method is used
to refine the initial channel estimate obtained in the first step.
We have shown due to specific structure of OSTBC, both
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Figure 2: The NMSE of channel estimates obtained from
different methods with TRP = 10 blocks and for two different
values of SNR, versus block indexn; second example.

steps can be significantly simplified. To initiate the track-
ing process, a training block is required. Also, to avoid error
propagation, the training process needs to be repeated oncein
a while. Simulation results show that, for a training repetition
period of 10 blocks, this algorithm can have a performance
within 1 dB, in terms of SNR, from the coherent ML receiver
which has the perfect knowledge of the channel.
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