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ABSTRACT 2. BACKGROUND

In this paper, we consider the problem of channel trackin%ons'der aMIMO system witl transmitter and/ receiver

for a MIMO communication system which uses orthogonanténnas. In a time-varying flat-fading channel scenéio, t

space-time block codes (OSTBCs) as the underlying spacéeceived signal, attime can be written as

time coding scheme. We propose a two-step tracking algo-

rithm. As the first step, Kalman filtering is used to obtain y(t) =x(O)H(t)+v(t) 1)

an initial channel estimate for the current block based en th ] S

channel estimates obtained for previous blocks. Thengn thwhereH(t) is theN x M channel matrix with iti, j) ele-

second step, the so-obtained initial channel estimate-is rénent equal to théime-varyingchannel coefficient between

fined using a decision-directed iterative method. We showheith transmit antenna and theh received antenngj(t) is

that due to specific properties of OSTBCs, both the Kalmaithe 1x M vector of received data, andt) is the 1x N vector

filter and the decision-directed algorithm can be signifiyan of transmit data. o

simplified. Simulation results show that the proposed track ~ We consider a block transmission scheme and assume

ing method can provide accurate enough channel estimateghat within the block period’, the channel is fixed, i.e., the
channel is assumed to lpiasi-static However, between
different blocks the channel can change. Based on such an

1. INTRODUCTION assumption, thath received block can be written as

Multiple-input multiple-output (MIMO) communications Y (n) = X(n)H(n)+V(n) 2)
and space-time coding have been the focus of extensive re-

search efforts. Among different space-time coding schemegghere

presented in the literature, orthogonal space-time block

codes (OSTBCs) [1], [2] are of particular interest because A TinT _ - T

they achieve full diversity at an affordable receiver coaxpl Yn) . [yT (n"T—-T+1) yT (nT)]T 3)
ity. Indeed, given the MIMO channel, the maximum likeli- X(n) = X (nT-T+1) - x (nT)] (4)
hood (ML) optimal receiver for OSTBCs consists of a linear Vi) 2 FT(T-T+1) - vInT)" (5)

receiver followed by a symbol-by-symbol decoder. Also, it

thhaés l\r/lel(li/legﬂghgi?]g Isigot\;}li?l(ijrry[?&éz?i}ig)t)rlgalhoor\i:)é \(/)(fer(,)tsh-irs%(ri-s’are thenth block of the received signals, transmitted signals,

teresting property of OSTBCs is based on the assumptioﬁnOI noise, respectively, ad" denotes the transpose opera-
that the channel is fixed during a long enough time interval®©'- The noise is assumed to be zero-mean complex Gaussian
In practice, the channel may however be time-varying du@nd spatio-temporally white with varianag,/2 per real di-

to the mobility of the transmitter and/or receiver, as well a mension. , , )

due to the carrier frequency mismatch between the transmit- [N space-time block coding, the mat&(n) is a mapping

ter and receiver. Therefore, channel tracking is an esdentiwhich transforms a block of complex symbols tora< N
processing in these cases. complex matrix. Hence, we hereafter repla¥én) with

Kalman filtering based channel tracking has been studie§(s(n)) wheres(n) is thenth symbol vector oilengtK. Let
in [4] in application to channel tracking for MIMO commu- US denote(n) ass(n) =[s1(n) S;(n) - sc(n)]". TheT x N
nication systems which use Alamouti scheme as the underlypatrix X(s(n)) is called an OSTBC [1], [2] if all elements
ing OSTBC. In this paper, we extend the result of [4] for any°f X(s(n)) are linear functions of th& complex variables
type of OSTBCs and show that Kalman filtering can be sig{s(n)}_; and their complex conjugates, and if, for any ar-
nificantly simplified due to the specific structure of OSTBCs.bitrary s(n), X(s(n)) satisfies:
Unlike [4], we assume that the channel is fixed during trans-
mission of each block of data, and it can only change between H _ 2
blocks. Based on such an assumption, we develop a two-step X (s(m)X(s(m) = [ls(m)*In ©)

channel tracking algorithm. In the first step, Kalman fileri ; ; ; T ;
is used at the beginning of each block to track the channeYYhereIN IS tneN xN |dent|ty.r.natr|x,|| s the Euclidean
iorm, and-)™ denotes Hermitian transpose. It follows from

In the second step, to improve the quality of the channel e —
timate obtained by Kalman filtering, we propose a simpl VCﬁttgﬁfg]smon of OSTBCs that the matriX(s(n)) can be

iterative channel estimation technique. This iterativéhrod
is in fact a decision-directed algorithm and it consistsesf s
quential use of a linear receiver and a linear channel estima _

aus X(s(n) = 3 (CRels(m}+Dum{s(m}) ()

~



where R¢-} and Im{-} denote the real and imaginary parts,
and Craanellpdarkiges AreaRfigesb@srence (EUSIPCO 2006), HIBIBACEN

Ck=X(u) and Dy=X(juk) (8)

whereuy is thekth column of the identity matri¥x andj =
v —1. Let us define the “underline” operator for a maf#tx

asP 2 [vec' {Re(P)} vecT{Im(P)}]T where veg-} refers

Without assuming any model for the MIMO channel,
,QeH@%m:@%@mMaﬁb?@waﬁn ill-posed

problem. Fortunately, in many practical scenarios, thewir
less channels can be modeled with a few parameters. It has
been shown in [5] that the first-order autoregressive (AR)
model can be used as a sufficiently precise method to de-
scribe the time-varying behavior of wireless channels.edas
on this model, we assume that the channel variation between
adjacent blocks is modeled as a first order AR model, i.e.,

to the vectorization operator stacking all the columns of a

matrix on top of each other. Using (7), we rewrite (2) as
§F(n) =Y (n) = A(H(n))8n + ¥n 9)

where the following definitions,= s(n) andv, £ V(n) are

used and theM T x 2K real matrix A (H(n)) is given by
A(H(n)) = [C1H(n)... CkH(n) D1H(n) ... DH(n)].

It has been shown that for any channel matfin), the
matrix A (H(n)) satisfies the so-calledecouplingproperty,

i.e., its columns are orthogonal to each other and they have

identical norms [7]. More specifically, it satisfies:
AT(H(n) A(H(n)) = [H(n)|E I (10)

where ||.|[r denotes the Frobenius norm.
the 2VMIN x 1 time-varying channel vectdi(n) ash(n) 2

H(n). With a small abuse of notation, we hereafter replace,

A (H(n)) with A(h(n)). Therefore, we rewrite (10) as

AT (h(n) A(h(m) = [h(n)[?Tx. (11)
Since A(h(n)) is linear in h(n), we can write
vec{A(h(n))} = ®h(n) where @& is a unique
AKMT x 2MN matrix whosekth column, [®]y is given
by [®]x = vec[A(ex)} and e is the kth column of the
identity matrixIoyy-.

Note that the matrix® can be written as® =
(@] --- ®J]T where each sub-matri (k= 1,...2K) de-
scribes the linear relationship between #th column of
A(h(n)) andh(n),i.e.,

[A (h(n)]k = @xh(n) (12)
where[-]x denotes théth column of a matrix.

Given the channel vectoh(n), the optimal ML de-

H(n)=aH(n—1)+W(n) (14)
whereW (n) is anN x M noise matrix which is assumed to be
zero-mean complex Gaussian with independent entries and
variance ofag2/2 per real dimension. The parameteris

a complex scalar that can be estimated using the method of
[6], and hence, it is herein assumed to be known. The noise
varianceog? anda are related ag = o(1— |a|?) where

o} is the variance of each elementHf(n) and| - | denotes
the amplitude of a complex number.

3. KALMAN FILTER BASED CHANNEL
TRACKING

In this Section, we study the problem of channel tracking via
Kalman filtering. We propose a two-step channel tracking al-
gorithm. In the first step of this algorithm, Kalman filtering

Let us defings used to obtain an initial channel estimate for the current

block based on the channel estimates obtained for the pre-
vious blocks. This initial channel estimate is then refingd b
sing an iterative decision-directed technique which ives

a linear ML channel estimator based on the decoded trans-
mitted symbols. In fact, the linearity of such an ML channel
estimator follows from the specific properties of OSTBCs.
We will also show that due to the specific structure of OS-
TBCs, Kalman filtering based channel tracking can be sig-
nificantly simplified. To mathematically derive the two{ste
channel tracking algorithm, we rewrite (9) as

¥n=B(En)h(n)+ ¥y (15)

where the BT x 2MN real matrixB(Sp) is defined as

B(8n) £[A(e1)8n A(e2)3n ... A(eawn)3n].  (16)
The following Lemma plays an important role in simplifying
the forthcoming Kalman filtering algorithm.

Lemma 1: The matriB(Sp) has orthogonal columns and

the norm of each column is equallte(n)||?, i.e., it satisfies:

coder for OSTBCs consists of a linear receiver followed by

symbol-by-symbol decoder [8]. Indeed, the linear receiver

computes, the estimate of,, as

2 1

nN= T o

T ~

The symbol-by-symbol decoder then builg®), the esti-

mate of vectos(n), ass(n) = [Ix jIk]§n. Thekth element of
§(n) is compared with all the points in the constellation cor-
responding ta(n) and the closest point to tHeh element

of §(n) is accepted as thHeh decoded symbol.

BT (80)B(3n) = [|s(n)||*Toun - 17)

Proof: See [10]. |
It follows from (15) and (17) that givesy, the ML esti-

mate of the channel vectt(n) can be obtained as
1

———B'(8n)¥n.

sz "

This is an important observation because it implies thaisf t
information symbols were available, the optimal ML channel

hy () = (18)

Note however that implementation of the ML decoderestimation would involve a linear estimator as in (18). How-
requires the knowledge of the time-varying channel. If theeVer, in practice, the information symbols are not avadabl
channel is fixed, one can use training to estimate the cha@nd need to be estimated. To overcome this problem, one can
nel. However, in practice, the channel is time-varying, and!Se a decision-directed channel estimation and symbatdete

hence tracking of the MIMO channel is required.

tion algorithm. Given an initial channel estimat& (n), one



can replacé(n) in (13) with h(®(n) and obtain an estimate The following Lemma uses the result of Lemma 1 to
for 8,/ 4hyEiBreahfionaifrrers I RPViAMeriee (GHSBEQU2S). Fledhae Ithy, Sesepiskation 2boarapipxjty by Elmi@t *(n) in
in (18) instead ofs(n) to obtain a new estimate fdi(n),

sayh®(n). This new channel estimate will be used in (13)
instead ofh(n) to obtain a new estimate &fn). This pro-
cedure is repeated until the normalized difference betwee

Lemma 2: IfP(n—1jn— 1) is a diagonal matrix, then,
P(njn—1)in (22) andP(n|n) in (28) are also diagonal, i.e.,

two consecutive channel estimates is negligible. Thisiter P(n—1n—1) = én-1lamn (29)
tive procedure can be viewed as a decision-directed channilen

estimation scheme. The accuracy of this scheme depends on P(nin—1) = Brloun

the availability of a precise enough initial channel veasr d

timateh(©) (n). We propose to use Kalman filtering to obtain P(n|n) = &Iun

such a precise initial channel estimaité?) (n), based on the

: ; ; here
channel estimates obtained for the previous blocks. w _ 2 2
In what follows, we discuss the details of the Kalman fil- Pn=dn-1lal”+ (0/2)
tering technique when applied to our MIMO channel track-and
ing problem. We show that using Lemma 1, the Kalman filter S = 02PBn/(2|S(N)||?Bn + 02).

can be simplified significantly. To show this, we use (15) as

the observation model of the Kalman filter [9]. Note that the ) - . . .
data model in (15) is real-valued. To obtain a real-valued Proof: Substituting (29) into the predicted state covari-

state transition equation, we can rewrite (14) as ance in (22), we can rewrite it as

h(n) =Fh(n—1)+w(n) (19) Pn-1) = & 1FF' +Q=|a[?& 1lawn+Q
2
where = <|a|6,121+ %) Lovn. (30)
Re(a)l —I I
F £ |megg;1m RQ&%%M“QN (20)  Inserting (30) into (25) and using matrix inversion lemma,

P, 1(n) can be written as
andw(n) = W(n) is the real-valued process noise with co-
variance matrixQ = (02/2)Ioyn. We can now use (19)

P,l(n)=R1-R B,

as the real-valued state transition equation requiredhfer t Tz \R-1R(z -1 B PV |
Kalman filter. ? a (B (80)R“B(8n) + P (nin 1)) B (En)R
The Kalman filtering problem for channel tracking in 2 4 _
OSTBC-based MIMO communication can now be formally = EIZMT - FB(SH)
stated as it follows: Given the measurement-to-state ratri v v 1
B(8n), use the observed daga o find the minimum mean 2 _1.- - 1 T~
squared error (MMSE) estimate of the state vettor) for U_\;B (8n)B(8n) + EIZMN B (3n)
eachn > 1.
Given the estimate of the state at time- 1,h(n— 1jn— _ EI _ 4Bn B(3n)B" (3n)
1) and the associated error covariance ma#{r— 1|jn—1), 02 M7 2||s(n)||?BnoZ + o n :
the Kalman filter [9] is used to obtain the estimate of the (31)

state at timen, i.e., h(n[n) and the associated error covari-
ance matrixP(n|n). The Kalman filtering algorithm can be where we have used (17). Inserting (31) into (26), we obtain

summarized as it follows: that
h(nn—1)=Fh(n—-1jn—-1 21 o2
(nn—1) (n—1n-1) ; (21) P(njn) = (—an 2) PIVIVE (32)
P(Nn—1)=FP(n—1n—1)F +Q (22) 2||s(n)[|*Bn + 07
yn=B(Sn)h(nn—1) (23)  The proof is complete. u
v(n) = §n— Vn (24) Based on Lemma 2, P(0|0) is initialized as a diagonal

_ = _1\RT/(z matrix, P(njn— 1), P, 1, andP(n|n) always take the form of
Py(n)=R+B(E)P(nn—1)B'(5n) (25) (30), (31), and (32),Vrespectively.
G(n)=P(nn—1)B"(8,)P,(n) (26) _ Itis also noteworthy that using (30) and (31), the Kalman
h(n|n) = h(njn— 1) + G(n)v(n) 27) filter gainG(n) in (26) can be simplified as
P(njn) = P(nn—1) - G(n)Py(n)G'(n) (28) 2 4B, |s(n)]|2

02 2||s(n)|2Br0Z + o]

| | | G(n) = By < ) BTG, (33)
whereh(n|n— 1) is the predicted stat® (njn— 1) is the co-

variance matrix of the predicted stafg, is the predicted ob-
servation,v(n) is the innovation proces®(n) is the in-
novation covariance matrix(n) is the Kalman gain [9], Using (23), (24) and (33), we can simplify (27) as

andR :_E{\”rn\”fﬁ} is the covarijanr(]:e rrr11atrix of the measure-

ment noisevy. As we assumed that the measurement nois — Tz V(% 3

is spatio—temnporally white with a variance of/2 per real B(nin) = h(njn—1)+ B (Sn)(y(n) ~B(n)h(nin— 1))

dimension, thereforR = (6Z/2)Ioyt holds true. = (1— y|ls(n)||>)h(nn—1)+ BT (8n)§(n) (34)

£pin



Therefore, the Kalman filtering algorithm can be simpli Re{h;(n)} Re{hy(n)} Re{hz(n)} Re{hs(n)}
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/
A= = Fbin-—1i-1) @ oA\ S oA m.f\/ o /N
_ 24 2w - - - -
Bn = dn-afjarl|"+ 2 (36) %0 50 100 0 50 100 ‘0 50 100 "0 50 100
2 4Bsm)]? y ¥ y y
=Bn| = — 37 Re{hs(n)} ~ Re{hg(n)}  Re{hz(n)} Re{hg(n)}
o=t (o it ia) 0 i z 2
h©(n) £ h(njn) = OM\ o““\wf o ] o/\/
(1= Halls() )0l — 1) + pB (5n)3(n) (38) 0 ;o 0 %0 50 10 %0 50 100 20 50 100
&n = 0y B/ (2l[s(0)|*Bn + 07). (39) n n n n
- Re{hg(n)}  Re{hio(n)}  Re{hii(n)} Re{hy2(n)}
The so-obtained(©) (n) is then used in the aforementionec 5 2 5 2
decision-directed iterative procedure to obtain a morei-acc
rate channel estimate. 0 \/\ 0 0 /\/ 0 W
Remark 1:Note that the simplified Kalman filter requires ! J
the knowledge of the symbol vectsy {or s(n)). However, _s5 -2 -5 -

the primary objective is to decodgn). To overcome this © 50 100 0 50 100 0 50 100 O 50 100
issue, we propose to replasg ih Kaiman filter equations n n n n

(35)-(39) by its estimate which is obtained as
Figure 1: The real parts of true channel coefficients (solid

2 1 5 li d th timated ch I fficients (dashed))i
_ AT(h(nn—1 40 mes) and the estimated channel coefficien s (dashed)]ines

Sn [h(njn—1)||2 (h(ni ))¥n (40) obtained from our Kalman filtering based method, versus

o block indexn for SNR = 10 dB and TRP = 10; second exam-
Remark 2:To initiate the whole process, we also need top

obtain an accurate enough channel estinbd@®. To obtain

such an initial channel estimate, one can use a trainindgbloc

s(0) which is known to the receiver. At the beginning of the = 19 4B and TRP = 10 are chosen. Figure 2 shows the NMSE

tracking process, the receiver can then use (18) to obtain thyf channel estimates versus block indesor different meth-

ML estimate ofh(0) as ods and for two different values of SNR. In this figure TRP
R 1 =10 blocks is chosen. Figure 3 shows the symbol error rates

(0) = ﬁBT(go)yo, (41) (SERs) of different methods, versus SNR, for different val-

[s(O)| ues of TRP. In this figure, we have also plotted the SER for

. : . the (clairvoyant) coherent ML receiver which is aware of the
Remark 3: To avoid error propagation, we need to r.e'time-varying channel. Itis noteworthy that the latter ieee
peat training once in a while. The training repetition pério d ical licati d iti
(TRP) determines the bandwidth efficiency of system and i oes not correspondto any practical application and itms co
dered here only for the sake of comparison.

is defined as the number of blocks between two consecuti As can be seen from Figure 1, our Kalman filtering based

training blocks. channel tracking technique provides channel estimatds tha
are quite close to the true channel coefficients. Figure 2
4. SIMULATION RESULTS shows that our proposed channel tracking algorithm signif-

We consider a MIMO system with the full-rate real OS-icantly outperforms the prediction based method. Interest

TBC of Tarokh (i.e., eqn. (27) of [2] with real BPSK sym- ingly enough, the NMSE of channel estimates for the predic-
bols) with K =M =T =4 andN = 3. The signal-to- tion based method is not improved as the number of received

noise ratio (SNR) is defined as?/02. In each simula- blocks increases while the NMSE of channel estimates for

tion run, the elements dfi(n) are generated based on (14) our proposed technique shows a continuous improvement as
' T 'the number of received blocks is increased.

wherea = o_gg&ejB_G is chosen ands? is obtained from In terms of SER, Figure 3 shows that the performance of
o2 = (92(1_ |al2). We compare our Kalman filtering based our channel tracking method can be quite close to that of the

method with the coherent ML receiver (which has the perfecfoherent ML receiver. Indeed fora TRP = 10, the SER of our
knowledge of the time-varying channel), as well as with aechnlque can be within 1 dB from the coherent ML receiver.
channel estimation method which uses the predicted channel
estimate as the initial channel estimate for the iteratea-d 5. CONCLUSIONS

sion directed method. To compare the performance of thesg this paper, we studied the problem of MIMO channel
two techniques in terms of channel estimation accuracy, Wgstimation for communication systems that use orthogonal
use normalized mean squared error (NMSE) of the channgyace-time block codes as the underlying space-time coding

estimates defined as scheme. For such systems, we proposed a two-step channel
- 2 tracking algorithm. As the first step, Kalman filtering is dse
NMSE= E [H(n) —H(n)]| to obtain an initial channel estimate, for each block, based
|H(n)||2 on the channel estimates obtained for the previous blooks. |

the second step, an iterative decision-directed methoskid u

Figure 1 shows the real part of the true and the estimatet refine the initial channel estimate obtained in the firsp st
channel coefficients versus block indexn this figure, SNR ~ We have shown due to specific structure of OSTBC, both
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Prediction based method SNR = 0 dB 10"

——=&—— Proposed KF based method, TRP = 100
— & - — Prediction based method, TRP = 100

—=6—— Proposed KF based method, TRP = 10
— & - — Prediction based method, TRP = 10
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-10 -8 -6 -4 -2 0 2 4

SNR (dB)

Figure 2: The NMSE of channel estimates obtained fronFigure 3: The SERs of different methods, versus SNR, for
different methods with TRP = 10 blocks and for two differenttwo different values of TRP; second example.

values of SNR, versus block indexsecond example.

5]
steps can be significantly simplified. To initiate the track-
ing process, a training block is required. Also, to avoiaderr
propagation, the training process needs to be repeatedronce
awhile. Simulation results show that, for a training refeti 6]
period of 10 blocks, this algorithm can have a performancL
within 1 dB, in terms of SNR, from the coherent ML receiver
which has the perfect knowledge of the channel.

(7]
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