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ABSTRACT

We treat the problem of finding minimum mean-square error
(MMSE) spectral amplitude estimators for discrete Fourier
transform (DFT) based single-channel noise suppression al-
gorithms. Existing schemes derive gain functions analyt-
ically based on distributional assumptions with respect to
the speech (and noise) DFT coefficients and on mathemat-
ically tractable distortion measures. In this paper we pro-
pose a methodology to estimate the MMSE gain functions
directly from speech signals, without assuming that speech
DFT coefficients follow a certain parametrized probability
density function. Furthermore, the proposed scheme allows
for estimation of MMSE gain functions for pdf/distortion
measure combinations for which no analytical solutions are
known. Simulation experiments where noisy speech is en-
hanced using the estimated gain functions show promising
results. Specifically, the estimated gain functions perform
better than standard schemes, as measured by a range of ob-
jective speech quality criteria.

1. INTRODUCTION

With the increased use of mobile digital communication sys-
tems, e.g. mobile phones, digital hearing instruments, etc,
there is a need for such systems to work well in acoustically
noisy environments. One way of improving the noise robust-
ness of these systems is to reduce the noise level in the noisy
speech signals using a pre-processing step and then apply the
enhanced signals as input to the communication chain.

Many single-channel methods for reducing the noise
level in noisy speech signals are based on the discrete
Fourier transform (DFT), see e.g. [1, 2, 3], and more recently
[4, 5, 6]. Since these methods rely on a stationarity assump-
tion, the noisy signal is divided into short-time signal frames
which are transformed to the frequency domain using the
DFT. Assuming that the resulting DFT coefficients are statis-
tically independent, scalar gain functions are applied to each
DFT coefficient separately in order to compute an estimate of
the DFT coefficients of the clean (noise-free) speech signal.
Finally, the estimated clean DFT coefficients are transformed
back to the time domain using the inverse DFT and the result-
ing enhanced signal frames are overlap-added to produce the
enhanced speech signal.

The wide range of existing DFT based enhancement tech-
niques mainly differ in the underlying statistical assumptions
concerning the probability distribution functions (pdfs)of the
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speech and noise DFT coefficients and in the distortion mea-
sures optimized for. Traditionally, clean speech DFT coef-
ficients have been assumed Gaussian, e.g. [2, 3], but more
recently estimators based on a laplacian distribution [5],a
gamma distribution [4], and a generalized supergaussian dis-
tribution [6] have been proposed. Noise DFT coefficients
are most often assumed Gaussian, but also here estimators
have been derived for other distributions, e.g. [4, 5]. Existing
schemes minimize different distortion measures including
the mean-square error (MSE) between spectral magnitudes,
e.g. [2], log-spectral magnitudes, e.g. [3], and complex-
valued DFT coefficients, e.g. [4, 5], see also [7].

Obviously, the different distributional assumptions and
distortion measures outlined above lead to different gain
functions with which the noisy DFT coefficients are mod-
ified. In most cases, however, these gain functions are
parametrized by two quantities, namely the a priori signal-
to-noise ratio (SNR) and the a posteriori SNR. While the a
posteriori SNR can be computed directly from the available
noisy data1, the a priori SNR is a ratio of two expected values
and must be estimated from the noisy data. The a posteriori
andestimated a priori SNR are then substituted into the de-
rived gain functions to find the gain value with which a given
noisy DFT coefficient is modified. It is important to note,
though, that this procedure isnot optimal. The gain func-
tions are derived under the condition that the a priori SNR
is known with certainty. By replacing the a priori SNR with
an estimate, the underlying assumptions have been violated,
and there may (and generally does) exist another gain func-
tion leading to better performance.

In [4, 5] and [6] this problem was recognized. Here it
was argued that the distribution of clean speech DFT coeffi-
cientsat a given a priori SNR level can be approximated as
following a Laplacian or Gamma distribution [4, 5], or even
a generalized super-gaussian distribution [6], and appropriate
minimum MSE (MMSE) and MAP estimators, respectively,
were derived under these distributional assumptions.

In this paper our goal is to find optimal gain functions
while taking into account that the true a priori SNR is un-
known, but only an estimate is available. In contrast to
most existing schemes, e.g. [1]–[7], our approach is non-
parametric, i.e., we do not assume that pdfs related to the
target signal follow any particular parameterized class of
pdfs. Rather, we estimate the relevant distributional infor-
mation prior to run-time from training speech material. In
this way our approach bears similarities to the data-driven
scheme presented in [8] (which, however, assumed the true

1We assume here that the power spectral density (psd) of the noise is
known with certainty in all signal frames.
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a priori SNR to be known with certainty). Further, the pro-
posed scheme allows for estimation of MMSE gain functions
for speech pdf/distortion measure combinations for which no
analytical solutions are known. In this paper we focus for
simplicity on schemes where the a priori SNR is estimated
using the maximum likelihood (ML) approach described in
[2]. We show that our gain functions significantly outperform
other schemes based on the (ML) apriori SNR estimate; in
fact, they give better performance scores than schemes based
on the much more used decision-directed approach for a pri-
ori SNR estimation [2].

2. DEMONSTRATION OF PROBLEM

To set the stage we perform the following initial experiment.
Let us consider the zero-mean random signal model

X(m,k) = S(m,k)+W(m,k), (1)

where the complex random variablesX(m,k), S(m,k),
W (m,k) ∈ C represent thek’th DFT coefficient in framem
of the noisy, clean and noise signal, respectively. We as-
sume that the real and imaginary parts ofS(m,k) are in-
dependent and identically distributed (iid) Gaussian random
variables, each distributed according toN (0,σ2

S /2), where
σ2

S denotes the variance of the complex spectral component
S(m,k). Thus, realizations ofS(m) are iid. In a similar way,
we assume that the real and imaginary parts ofW (m,k) are
iid and distributed according toN (0,σ2

W /2), whereσ2
W is

the variance ofW (m,k). We assume thatS(m,k) areW (m,k)
are independent. We now synthetically generate a complex-
valued time-series of the form in Eq. (1), form = 1, . . . ,104

and for some fixedk. X(m,k) represents the DFT coefficients
of a noisy speech signal, but clearly the situation is idealized
because the generated time series is completely stationary.

In [2] the MMSE short-time spectral amplitude (STSA)
estimator was derived under conditions satisfied by the con-
structed signal above. This estimator is a function of the a
posteriori SNR defined as [1]

γ(m,k) =
|X(m,k)|2

E{|W(m,k)|2}
=

|X(m,k)|2

σ2
W (m,k)

(2)

and the a priori SNR defined as

ξ (m,k) =
E{|S(m,k)|2}
E{|W (m,k)|2}

=
σ2

S (m,k)

σ2
W (m,k)

, (3)

whereE{·} denotes the statistical expectation operator.
We apply the MMSE-STSA estimator to the noisy time

seriesX(m,k) (fixedk) in order to estimate the magnitude of
S(m,k). We assume that the noise varianceσ2

W (m,k) = σ2
W is

perfectly known, and consider two different situations:a) an
ideal (but not practically realizable) situation where thevari-
ance ofS(m,k), σ2

S (m,k), and thusξ (m,k), is known as well,
andb) the situation in practice whereξ (m,k) is unknown and
must be estimated from the available noisy dataX(m,k). In
order to emphasize the problem in b), we estimateξ (m,k)
using the maximum likelihood approach described in [2],

ξ̂ (m,k) =

(

1
M

m

∑
l=m−M+1

|X(l,k)|2
)

/σ2
w −1, (4)
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Figure 1: Mean square estimation error for different input
SNRs.

usingM = 3 observations ofX(m,k). We then estimate the
resulting mean-square estimation error for situationsa) and
b). We fix σ2

S (m,k) = 1 and repeat this procedure for sev-
eral noise levelsσ2

W (i.e. different a priori SNRs) leading to
the performance curves shown in Fig. 1. We see that even
in this idealized setup where signals are stationary and dis-
tributed according to the underlying assumptions, the per-
formance promised by theory (dashed line) is not achieved
in practice where a priori SNR is estimated from the avail-
able noisy data2. The reason is that the theoretically derived
MMSE-STSA estimator assumes perfect knowledge of the a
priori SNR, an assumption which is not fulfilled in practice.

As mentioned, the problem was addressed in [4, 5] and
[6], where gain functions were derived based on speech pdfs
measured at a givenestimated a priori SNR level. While
[4, 5, 6] assume that the underlying speech pdfs are members
of a parameterized pdf class, we present in the following a
data-driven approach which avoids such restrictions, but still
takes into account that the apriori SNR is estimated.

3. FINDING OPTIMAL GAIN FUNCTIONS

Consider the random signal model of noisy DFT coefficients

X = S +W,

where we now have dropped both the frame and frequency
bin index because each noisy DFT coefficient is processed
independently. LetX = Re jϑ andS = Ae jα denote polar rep-
resentations of the noisy and clean DFT coefficients, respec-
tively. In this paper we focus on minimizing distortion mea-
sures which are functions of the spectral magnitudeA, i.e.,
the problem of interest can be stated as

min
Â

E{d(A, Â)}, (5)

where Â denotes the estimated spectral magnitude, and
d(A, Â) is some pre-specified distortion measure. Clearly,
for the functiond(A, Â) = (A − Â)2, we have the MMSE-
STSA problem addressed in [2], while ford(A, Â) = (logA−
logÂ)2 the problem was considered in [3] (both assuming
Gaussian speech DFT coefficients). Other, more perceptu-
ally relevant, choices ofd(A, Â) such as the ones proposed in
[7] are also possible with our approach.

We assume that the estimatorÂ can be written as

Â = g(γ, ξ̂ ) ·R,

2In many state-of-the-art schemes, the the decision-directed approach [2]
is prefered over the ML approach for a priori SNR estimation.We choose
to use the ML approach in this example for illustration purposes. However,
the problem addressed also exists with the decision-directed estimator.
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i.e., the gain functiong(·) is parameterized by the a poste-
riori SNR, γ = R2/σ2

w, and someestimate ξ̂ of the a priori
SNR ξ = E{A2}/σ2

w. This assumption is not very restric-
tive; many known gain functions can be parameterized like
this, see e.g. [2, 3, 6].

3.1 Discretized gain functions

The gain functiong(γ, ξ̂ ) is a function of two continuous
variables, and our goal is to find the function that solves the
minimization problem in Eq. (5). To do so we discretize the
supportC of (γ, ξ̂ ) and introduce a piecewise constant ap-
proximation ofg(γ, ξ̂ ). More specifically, we divideC into
disjoint cellsCi, C = ∪iCi, chosen such that the (unknown)
gain function can be assumed constant over each cell,

g(γ, ξ̂ ) ≈ gi for (γ, ξ̂ ) ∈Ci. (6)

Clearly, the approximation in Eq. (6) can be made arbitrar-
ily accurate by defining suitable small cellsCi and assum-
ing thatg(·) is a well-behaved smooth function. With this
approximation, it can be shown that the total expected esti-
mation errorE{d(A, Â)} can be written as a sum of separate
distortion termsE{di} related to each cellCi,

E{d(A, Â)} = ∑
i

E{di(gi)}.

In order to minimize this expression, we can minimize each
E{di(gi)} separately with respect to the gain valuesgi.

We estimate the gain values using a data-driven approach,
where we collect a large number of realizations(a,r) of the
random variable pair(A,R) using synthetically mixed noisy
speech signals (see Sec. 3.2 for further details). For each such
observed(a,r) we compute a(γ, ξ̂ ) pair which in turn falls
within a cellCi. Define the setOi containing the observed
(a,r) pairs associated in this way with cellCi. To findgi we
must minimize the distortionE{di} related to cellCi:

E{di(gi)} ≈
1

|Oi|
∑

(a,r)∈ Oi

d(a,gir),

where|Oi| is the number of(a,r) pairs in cellCi.
The optimal gain value, sayg∗i , for cell Ci is found by

solving∂E{di}/∂gi = 0 for gi. For example, for the MMSE-
STSA problem,d(A, Â) = (A− Â)2, we find

g∗i =
∑(a,r)∈ Oi

ar

∑(a,r)∈ Oi
r2 , (7)

and for the log-spectral distortion measure,d(A, Â) =
(logA− logÂ)2 we have

g∗i = exp

(

1
|Oi|

∑
(a,r)∈ Oi

log(a/r)

)

. (8)

In a similar way, it is easy to derive expressions forg∗i for
more complicated distortion measures e.g. the ones consid-
ered in [7].

3.2 Estimation of gain functions

We collect realizations(a,r) of the random variable(A,R)
from a large quantity of clean and corresponding, syntheti-
cally mixed, noisy speech signals. The clean speech material
is taken from the Timit data base [9] and consists of approx-
imately 400 speech signals (roughly 25 minutes of speech)
from 14 female and 24 male speakers. The speech signals
are appropriately lowpass filtered and downsampled to ob-
tain a sample rate of 8 kHz. The initial and trailing silence
regions are discarded. Noisy signals are generated by adding
white Gaussian noise to the clean signals, scaled to obtain
global SNRs ranging from -14 to 25 dB in steps of 3 dB. The
result of this procedure is a total of approximately 5500 noisy
signals (for which the underlying clean signal is known).

In order to generate(a,r) pairs, we process the signals
in a standard front-end for a DFT based enhancement algo-
rithm as follows. The noisy and clean signals are divided into
frames of 256 samples with an overlap of 50%. The frames
are weighted by a Hann window, the DFT is applied, and
noisy and corresponding clean DFT coefficient magnitudes
are combined to form observations(a,r). For each noisy
DFT coefficient, we estimate the a priori SNRξ (m,k) us-
ing the maximum likelihood approach, Eq. (4)(M = 3), and
compute the a posteriori SNRγ(m,k) using Eq. (2). We de-
fine the cellsCi by quantizingξ̂ (m,k) andγ(m,k) uniformly
in the logarithmic domain in steps of 0.5 dB in the range
[−40;40] dB. With these definitions ofCi, each and every ob-
served pair(a,r) is associated with a cellCi (i.e., the setsOi
are constructed), and the optimal gain valueg∗i correspond-
ing to that cell may be calculated using e.g. Eq. (7) or (8).

In Fig. 2a we compare the gain functions estimated for
d(A, Â) = |A − Â|2 using the proposed procedure with the
gain functions derived in [2] assuming Gaussian speech DFT
coefficients; the authors are not aware of analytically derived
MMSE gain functions for this distortion measure for other
distributions. We see that the proposed gain functions gen-
erally deliver significantly more suppression than the ones
derived in [2]. For high a priori and a posteriori SNRs, the
gain functions approach unity, as expected. The noisy ap-
pearance of the estimated gain function forξ̂ = 15 dB is due
to the fact that the expression forg∗i in Eq. (7) is easily dom-
inated by outliers3. We believe that increasing the amount of
speech data on which the estimation is based will result in
smoother curves. The estimated gain function forξ̂ = 0 dB
is set to zero for high a posteriori SNRs because these com-
binations of low a priori SNR and high a posteriori SNR was
never observed in the offline estimation procedure.

Fig. 2b compares our estimated gain functions with the
ones derived in [3] for the log-spectral distortion measure
d(A, Â) = | logA − logÂ|2. Again, it appears that no ana-
lytically derived MMSE gain functions exist for this distor-
tion measure for e.g. super-gaussian speech distributions. As
before, the estimated gain functions give more suppression
than the analytically derived functions. Also, using the log-
spectral distortion criterion leads to higher suppressionboth
for the gain functions derived in [2, 3] and for the ones esti-
mated here (compare Figs. 2a and 2b).

It may appear that estimating the gain functions based
on a training set consisting of speech signals degraded by

3Nevertheless, this gain function was used in all simulationexperiments
reported in the following.
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Figure 2: Proposed (‘Prop’) and analytically derived ([2, 3])
(’EM’) gain functions. a) the MMSE-STSA case,d(A, Â) =
|A− Â|2, b) the log-spectral case,d(A, Â) = |A− Â|2.

white Gaussian noise leads to gain functions tailored for the
white noise condition. We can argue, however, that this is
not the case, if we make the standard assumption that DFT
coefficients are statistically independent (across time and fre-
quency), e.g. [2, 3]. In this case, the noisy DFT coefficients
in the training set are simply realizations of independent ran-
dom variables, each of which is a sum of a speech DFT co-
efficient (drawn from some underlying pdf) and a noise real-
ization drawn from a zero-mean (complex) Gaussian distri-
bution. We note that, under the given assumption, this would
also be the case had the training set been generated using
coloured Gaussian noise. Thus, by observing the training set
we cannot determine whether it was produced using coloured
or white noise, and, consequently, the optimal gain functions
are the same in the two cases. While the gain functions are
independent of the noise colour, they will, however, be tai-
lored forGaussian noise processes.

4. SIMULATION RESULTS

We study the performance of the proposed method in simu-
lation experiments based on approximately 100 speech sig-
nals taken from the Timit data base [9]; the speakers and sig-
nals are different from the ones used for estimating the gain
functions. We construct noisy speech signals synthetically by
adding (quasi-)stationary noise sources to the clean signals.
The noise source are scaled in order to obtain a prescribed in-
put SNR. The input SNR as well as the objective speech qual-
ity criteria introduced below are measured on signals where
the initial and trailing silence regions have been discarded.

The noisy speech signals are enhanced using the DFT
based noise suppressor described in the previous section.
We assume that an ideal voice activity detector is available
and estimate the noise psd (which is assumed time-invariant)
from a noise-only region of roughly 350 ms preceding speech
activity. To evaluate the quality of the enhanced signals, we
use a number of objective speech quality measures. First, we
estimate the criterion which the particular noise suppression
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Figure 3: Average objective performance scores as function
of input SNR for the criteriond = |A− Â|2 and signals de-
graded by additive white Gaussian noise.

scheme aims at minimizing; for example, for the MMSE-
STSA distortion measureE{|A− Â|2}, we compute

D = ∑
l,m

|a(l,m)− â(l,m)|2,

where a(·) and â(·) denote clean and estimated spectral
amplitudes, respectively, and the summation is performed
across all frequency and frame indeces. We also evaluate the
quality in terms of segmental SNR (Seg-SNR), the Itakura
distance measure (log-likelihood ratio, LLR) [10] and the
symmetrized Itakura-Saito measure [11].

Fig. 3 considers the MMSE-STSA case, i.e.d(A, Â) =
|A − Â|2, for signals degraded by additive white Gaussian
noise. The figure shows objective quality scores averaged
across the test signals, as a function of input SNR for
the proposed gain function (‘Prop.’), and for the estima-
tor derived in [2] using for a priori SNR estimation the
maximum-likelihood approach withM = 3 (‘EM-ML’) and
the decision-directed approach with smoothing constantα =

0.98 (‘EM-DD’), respectively. For EM-ML and EM-DD,̂ξ
was limited to values larger than -15 dB. We see that the pro-
posed gain function is superior to the EM-ML estimator for
all input SNRs; this is expected since the EM-ML estimator
relies on a Gaussian speech assumption, while the proposed
gain function is based on real speech DFT coefficients. Re-
markably, the proposed gain function performs better than
the classical EM-DD estimator, eventhough it uses a ML
(M = 3) based a priori SNR estimate.

Fig. 4 considersd(A, Â) = | logA− logÂ|2, i.e., the log-
spectral amplitude case, for signals degraded by additive
white Gaussian noise. We compare here the proposed gain
function with the analytically derived estimators in [3], using
as before two different methods for a priori SNR estimation.
We see that generally, the proposed gain functions lead to
superior performance.

Finally, in order to demonstrate that the gain functions
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Figure 4: Average objective performance scores as function
of input SNR for the criteriond(A, Â) = | logA− logÂ|2 and
signals degraded by additive white Gaussian noise.

estimated based on signals degraded by white noise also per-
form well when applied in coloured noise environments, we
use the estimated gain functions to enhance the test speech
signals degraded by additive f16 cockpit noise taken from
[12]. Fig. 5 shows enhancement performance ford(A, Â) =
|A− Â|2. As before, the proposed gain functions perform
better than the standard estimators.

5. CONCLUSION

We have presented a scheme for estimating gain functions
which minimize MSE based distortion criteria for single-
channel DFT based speech enhancement. Unlike most exist-
ing schemes, our method does not assume that speech DFT
coefficients follow a certain parameterized class of pdfs. Fur-
thermore, the proposed scheme allows estimation of gain
functions for speech pdf/distortion measure combinations,
for which no analytically derived estimators exist. Our gain
functions perform better than existing standard schemes, as
measured by a range of objective speech quality criteria.
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