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ABSTRACT

This paper addresses the unsupervised speaker change de-
tection problem, which is a key issue in any audio indexing
process. Here, we derive a new approach based on the Kernel
Change Detection algorithm introduced recently by Desobry
et al. This new algorithm does not require explicit model-
ing of the data, and is able to deal with large dimensional
acoustic feature vectors. Several experiments using RT’03
NIST data show the efficiency of the algorithm. Compar-
isons to the well known GLR-BIC algorithm are presented,
for various parameter settings.

1. INTRODUCTION

The automated indexing of audio databases is an ac-
tive research area, which raises many challenging prob-
lems. Speech-related audio indexing requires, as sub-tasks,
speech/non-speech discrimination, speech recognition and
unsupervised speaker segmentation. The latter task consists
of labeling an audio record into segments, each containing
one and only one speaker at a given time1.

This problem has been studied in several previous works
(see, e.g., [1, 2] and references therein), and standard tech-
niques are based on the analysis of acoustic feature vectors
denoted x(n) (generally, MFCCs), living in the space X ,
extracted framewise2 from the signal x(n). Given the time
series of acoustic features x(n), n = 1, 2, . . ., most techniques
apply two sliding windows apart from the current analy-
sis time n. The analysis window located before n defines
the immediate past set Xp(n) = {x(n − mp), . . . ,x(n − 1)}
of mp acoustic features, whereas the other window con-
tains mf features vectors, forming the immediate future set
Xf(n) = {x(n + 1), . . . ,x(n + mf)}. In standard systems,
speaker segmentation comes down to comparing the vectors
in Xp(n) and Xf(n). This is performed using the General-
ized Likelihood Ratio (GLR) test, either directly [2] or indi-
rectly, such as in the Bayesian Information Criterion (BIC)
approach [3]. GLR-based tests require a probabilistic data
model to be given, generally a single Gaussian, or a mixture
of several Gaussians.

Subsequent to change detection, speaker indexing re-
quires to group signal segments (located in between detected
changes) into single speaker segments. This can be per-
formed by learning and maintaining a set of speaker models
(integrated approach [4, 5]) or step-by-step, by applying a
clustering technique [3], or by a fusion of both techniques
[1, 6]

1In real records, it may happen that several speakers can be
heard at the same time, but is a reasonable and often used sim-
plifying assumption that only one speaker is present at a time.

2Here, for notational simplicity, it is assumed that one acoustic
feature vector is extracted at each time n.

In this paper, we propose to apply the new Kernel
Change Detection (KCD) algorithm introduced in [7] to the
problem of speaker change detection and clustering tasks
known as speaker segmentation process in an indexing frame-
work. In this context, our approach is original as, to our
knowledge, there is no equivalent SVM based method re-
ported in the literature. A slightly similar work is reported
in [8] where, however, the algorithm presented uses a super-
vised strategy.

Different from the above approaches, this paper presents
a kernel unsupervised approach aimed at comparing the sets
Xp(n) and Xf(n) at each time n, by defining a dissimilarity
measure between these sets. In that respect, KCD is simi-
lar to GLR-based approaches. However, KCD being based
on two one-class Support Vector Machines (SVM), the com-
plexity of the model fitted to the data is controlled, while
being able to represent any data configuration, even with
large dimensional, heterogeneous acoustic features.

In Section 2, we recall the principle of the KCD algo-
rithm. In Section 3, we present our new KCD-based speaker
segmentation algorithm in terms of the acoustic features
used, as well as the abrupt changes detection algorithm, and
the segments grouping strategy (clustering). In Section 4, we
present experimental results for the RT03S database [9]. Our
results are compared to those obtained with the GLR-BIC
approach, thanks to the NIST scoring procedure. Section 5
presents conclusions and future work directions.

2. THE KERNEL CHANGE DETECTION
ALGORITHM

The Kernel Change Detection (KCD) algorithm, introduced
in [7], consists of estimating the level sets of the underly-
ing distributions of Xp(n) and Xf(n) at each time n. In
the following, we focus on any of these two sets, denoted X
for simplicity. Assume the feature vectors x1, . . ., xm in X
have been generated i.i.d. from a given probability density
function (pdf) p(x), i.e., p(X) =

Qm
i=1 p(xi) (this is the

assumption made in, e.g., the BIC approach). The level set

Sλ of p(x) is the set of points in the acoustic features space
X such that p(x) ≥ λ, where λ is some positive constant.
Whenever X = Rd and p(x) is the d-dimensional multivari-

ate Gaussian, Sλ is an ellipsoid in a d-dimensional space. In
the more general case, the level set may have any (gener-
ally smooth) shape. KCD applies one-class support vector
machines in order to estimate a level set from the feature
vectors, without assuming Gaussianity.

2.1 One-class SVM

Let us define a kernel function k
�
x1,x2

�
over X to the reals.

In the following, the kernel can be though of as Gaussian

k
�
x1,x2

�
= exp− 1

2σ2
‖x1 − x2‖2X (1)
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where ‖ · ‖2X is a norm in X . This kernel being definite posi-
tive, it induces a Reproducing Kernel Hilbert Space (RKHS)
denotedH [10]. The RKHSH is a linear vector space of func-
tions from X to R endowed with a dot product 〈·, ·〉H and
the corresponding norm ‖ · ‖H. Moreover, H is complete for
the norm3 ‖ · ‖H and the reproducing kernel property holds:
for any x ∈ X and any function f(·) ∈ H, the function k

�
x, ·�

belongs to H and 〈f(·), k�x, ·�〉H = f(x). In other words,
computing the possibly non-linear function f(·) at any point
can be performed by computing a (linear) dot product in H
(this is the so-called kernel trick). Given the Gaussian ker-
nel over X , and a set of feature vectors X, one-class SVM
estimates the level set as

Sλ = {x ∈ X|fλ(x) + b ≥ 0} (2)

The level set estimation problem becomes that of estimating
a function in H close to the true, unknown level set. H being
given (through the choice of k

�·, ·�), the function fλ(·) and b
are found by minimizing the regularized risk

Rreg [f(·) + b] = CRemp
X [f(·) + b] +

1

2
‖f(·)‖2H (3)

where the empirical risk Remp
X [f(·) + b] indicates how well

the function f(·) + b fits the feature vectors in the set X, and
‖f(·)‖2H penalizes too complex functions, that is, level sets
with too complicated shapes. The positive parameter C is
user-defined, and it trades off between the goodness of fit and
the complexity of f(·) + b. In practice, the empirical risk is
computed as the average cost incurred by errors, penalizing
functions f(·) + b that are negative at some training vectors:

Remp
X [f(·) + b] =

1

m

mX
i=1

max
�
0, f(xi) + b

�
(4)

Thanks to Eq. (3), finding the level set comes down to
solving an optimization problem in H. It can be shown [10]
that the function that minimizes the regularized risk can be
written for any x as

fλ(x) + b =

mX
i=1

αik
�
x,xi

�
+ b (5)

where the weights αi are actually the Lagrange multiplier
introduced to solve the minimization problem of Eq. (3).
The corresponding dual optimization problem, which yields
the αi’s, is quadratic with linear constraints (easy to solve).
This formulation yields, however, a difficulty: the parameter
C happens to be uniquely related to the level λ and the rela-
tion between C and λ is complex and may not be written in
closed-form. In practice, C has to be tuned by trial and er-
rors, and its relation to the desired λ is never assessed. This
problem can be overcome by using the ν one-class SVM [10],
which replaces the parameter C and the empirical risk by an
alternate definition and which may be written as the opti-
mization problem, where the optimal αi’s are to be plugged
into Eq. (5):

Minimize
1

2

mX
i=1

mX
j=1

αiαjk
�
xi,xj

�
w.r.t. {α1, . . . , αm}

with 0 ≤ αi ≤ 1

νm
for i = 1, . . . , m

and

mX
i=1

αi = 1

(6)

3A space is complete for some norm if all its Cauchy sequences
converge into it in terms of this norm.

k
�
x6, ·

�
〈fλ(·), g(·)〉H + b = 0

k
�
x2, ·

�
k
�
x1, ·

�
k
�
x5, ·

�
k
�
x8, ·

�
k
�
x4, ·

�
k
�
x3, ·

�
k
�
x7, ·

�

ra
diu

s =
1

Figure 1: Geometrical interpretation of one-class SVM in H.
The mapped training vectors k

�
xi, ·

�
, i = 1, . . . , m are all

located on a hypersphere with radius one. The function fλ(·)
and b define a hyperplane with equation 〈fλ(·), g(·)〉H+b = 0.
Most of the data are located on the side of the hyperplane
that is away from the hypersphere origin (the corresponding
weights αi are zero (i ∈ {1, 2, 4, 7}), whereas the outliers
k
�
x3, ·

�
and k

�
x8, ·

�
are located on the other side and are

such that α3 = α8 = 1/νm. The points located on the
intersection of the hyperplane and the hypersphere verify
0 < αi < 1/νm (i ∈ {5, 6}).

In the above optimization problem, the parameter ν
tunes the fraction of feature vectors in X that are located
outside the level set Sλ (these are called outliers). More pre-
cisely, it can be shown that, asymptotically, ν is the fraction
of outliers [10], which means that 1 − ν is the probability
mass enclosed inside the level set Sλ, yielding a relation be-
tween ν and λ. In practice, tuning ν is even more intuitive
that tuning λ. For example, ν = 0.2 means that at most
(and asymptotically exactly) 20% of the feature vectors in X
are outliers. In the following, we denote the SVM level sets
estimated from Xp(n) and Xf(n) with Sν

p(n) and Sν
f (n). Two

important remarks are that 1) most of the weights αi are
zero, the nonzero weights correspond to the outliers which
are also called Support Vectors (SVs) and 2) when X is one of
the sliding windows Xp(n) or Xf(n), the αi’s can be updated
easily for consecutive times n and n + 1, as, e.g., Xp(n) and
Xp(n + 1) differ by only two feature vectors – see [11] for
details.

The one-class SVM admits a simple geometrical in-
terpretation in H: First, the feature vectors in X
are mapped to H by x → k

�
x, ·�. Second, the

mapped training vectors all have norm one in H
when using the Gaussian kernel, because ‖k�x, ·�‖2H =

〈k�x, ·�, k�x, ·�〉H = k
�
x,x

�
= 1 (using the reproducing ker-

nel property), they are thus located on a hypersphere with
radius one. Third, solving Eq. (6) can be seen as finding, in
H, the hyperplane orthogonal to f(·) such that it is located
as far as possible from the hypersphere origin, separating it
from the training data k

�
xi, ·

�
, Fig. 1. From estimated level

sets, KCD defines a dissimilarity measure between the two
sets of features Xp(n) and Xf(n), by comparing the corre-
sponding level sets Sν

p(n) and Sν
f (n).

2.2 Kernel-based dissimilarity measure

The KCD dissimilarity measure is built on the assumption
that the sets Xp(n) and Xf(n) are similar if and only if the
estimated level sets Sν

p(n) and Sν
f (n) are similar according

to some dissimilarity measure. In X , the shape of Sν
p(n) and

Sν
f (n) may be complex and winding – with possibly several

non-connected parts – making the definition of a dissimilarity
measure difficult. Fortunately, we can use the geometrical in-
terpretation of one-class SVM in H: the level set is included
into the intersection of the hypersphere with the hyperplane
(a “hypercircle”), see Fig. 1. Thus, comparing the level sets
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radius = 1

k
�
xf, ·

�

〈fλ
p (·), g(·)〉H + b = 0

〈fλ
f (·), g(·)〉H + b = 0

fλ
f (·)fλ

p (·)

cν
p(n) cν

f (n)

k
�
xp, ·�

rν
p(n) rν

f (n)

Figure 2: Geometrical interpretation of KCD. The situa-
tion plotted corresponds to an abrupt change, because the
hyperplane parameterized by fλ

p (·) (corresponding to the im-

mediate past set – filled circles) and fλ
f (·) (corresponding to

the immediate future set – non-filled circles) are well sepa-
rated, and the distance d

�
cν
p(n), cν

f (n)
�

is large compared to
the radii rν

p(n) and rν
f (n), measured along the hypersphere.

Sν
p(n) and Sν

f (n) in X can be performed in H, by comparing
the corresponding hypercircles with centers denoted cν

p(n)
and cν

f (n) and radii rν
p(n) and rν

f (n) see Fig. 2. The radii can
be evaluated as the distance between the circle centers and
any point onto the hypercircle, such as one of support vec-
tors with 0 < αi < 1/νm, see Fig. 1. The KCD dissimilarity
measure is

Dν(n) =
d
�
cν
p(n), cν

f (n)
�

rν
p(n) + rν

f (n)
(7)

In the computation of radii as well as the numerator of
Eq. (7), the distance used is the arc distance, computed along
the hypersphere, and which can be computed only in terms
dot products in H, that is, kernel functions in X . In prac-
tice, Dν(n) is computed easily from the αi’s of each level
sets Sν

p(n) and Sν
f (n), see [7] for the closed-form expressions.

Note that several dissimilarity measures could be easily de-
fined in much the same way [12]. When applied to relevant
acoustic features, this dissimilarity enables the segmentation
of the time series x(n), as shown in [7] for music signals, and
in Section 4 for speakers.

3. KERNEL SPEAKER CHANGE DETECTION

This section details the full speaker change detection algo-
rithm, specific choices for the acoustic feature vectors, para-
meters tuning, and comparisons with other techniques.

3.1 Kernel speaker change detection algorithm

The speaker change detection algorithm is as follows. At
each time n, repeat the following three steps:
1. Acoustic features extraction, see Section 3.4. This

can be performed in the same time as the sets Xp(n) and
Xf(n) are formed.

2. One-class SVM computations, by solving Prob-
lem (6) for both sets — the lower complexity algorithm
presented in [11] can also be used, it simply updates the
weights αi’s using the fact that, e.g., Xp(n−1) and Xp(n)
are made of the same vectors, up to the newest and oldest
ones.

3. Dissimilarity measure computation, using Eq. (7),
which results in the index Dν(n). As in any other segmen-
tation technique, changes are detected whenever Dν(n)
peaks over some threshold, which can be fixed for all
times, or by an index search technique.

3.2 Kernel speaker clustering

Once the speaker changes are detected, the next impor-
tant step is clustering (see [13] and references therein for an
overview). It is an iterative agglomerative method that con-
sists of labeling segments of speech, which boundaries have
been detected by the previous algorithm, with speaker la-
bels. At each iteration, the algorithm groups the two closest
clusters, according to a chosen dissimilarity measure. Here,
the metric used to compare the segments is the dissimilarity
measure defined in Eq. (7).

The output of hierarchical classification is generally rep-
resented by a dendrogram which illustrates the consecutive
groupings of clusters. For all the experiments described
in section 4, and for both GLR-BIC and KCD algorithms,
we used complete linkage as an agglomerative rule because
it gave the best results. To form the final set of clusters
(the estimated number of speakers), a dendrogram pruning
method is needed so as to produce a partition composed of
all grouped segments. Several techniques exist in the liter-
ature (see [14] and references therein). Here, we chose the
simple though efficient technique which consists of cutting
the dendrogram at a given height.

3.3 Discussion

An important question about the kernel technique presented
here concerns its comparison to standard approaches based
on likelihood ratios. Actually, as pointed out by Vapnik [15],
it is a much easier task to learn a level set than a full pdf,
making the use of one-class SVM based techniques more
suited to change detection4. Moreover, recent results show
that the dissimilarity measure in Eq. (7) admits an inter-
pretation in terms of a modified generalized likelihood ratio
test, thanks to the exponential family of distributions [16].

Finally, the one-class SVM methodology enables to im-
plement learning in the RKHS, where the complexity of the
learning task scales as m, whatever the dimension dX of X
(that is, whatever the dimension of the acoustic features!).
Thus, a level set can be learnt from few data, compared to
dX .

3.4 Features selection

The latter property is actually a key advantage of our kernel
based approach. In practice, this enables the use of large
dimensional acoustic feature vectors. Examples are MFCCs
(standard choice), MFCC + LPC and any heterogenous com-
bination of acoustic features vectors (possibly large dimen-
sional). Redundancy is not critical with kernel methods,
unlike in the GLR-BIC approach. The results presented in
Section 4 show the interest of using many acoustic features,
within an inference framework that is insensitive to the di-
mension of the data.

4. EXPERIMENTS AND RESULTS

In order to evaluate the efficiency of our algorithm, several
experiments have been conducted. They are reported in the
following subsections.

4.1 Database

All the results reported here were carried out using the NIST-
RT’03S data [9]. These data are provided by the NIST eval-
uation campaign for speaker diarization on American broad-
cast news. They are divided in two corpora: one of them is
used for training the system and tuning parameters (devel-
opment corpora) and another called (evaluation corpora) is
devoted to validation.

4See [7] for a thorough discussion about the advantages of the
KCD over standard GLR approaches.
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Here, we actually used the dry-run files from the RT’02
broadcast news evaluation [6] as development corpora. This
development set is composed of six broadcast news records
of about 10 min each. The evaluation corpus is composed
of three 30 min talk-shows recorded in 2001 from various
American channels.

4.2 Experiments on dry-run files

In order to tune the KCD parameters for both speaker
change detection and clustering tasks we used the six dry-
run files. The experiments are made on each of the six files
and the results reported are the average on the whole dry-
run files. The evaluation metric used is the NIST evaluation
metric called Diarization Error Rate DER, (see [6] for de-
tails). This metric is clearly described in the NIST-RT’03S
evaluation plan [9].

Here, the acoustic parametrization is based on 16 Mel
Frequency Cepstral Coefficients. This first parametrization
is motivated by its wide use in speaker indexing, in particular
for GLR-BIC based methods [1, 2] and [6].

4.2.1 Tuning the KCD parameters

In order to select the best parameters with respect to the
DER, several experiments have been conducted, whose re-
sults are reported in Fig. 3 and Tab.’s 1-2. We recall that
the parameters to be tuned are : m = mp=mf (length of the
immediate past set Xp(n) and of the immediate future Xf(n)
set, assumed equal), in seconds. In practice, the sets Xp(n)
and Xf(n) are formed at each time n, and the time step be-
tween two adjacent such sets (i.e., between time n and n+1)
is denoted ∆n, and is expressed in seconds. Both m and ∆n

are used in the GLR-BIC and in the KCD algorithms, and
have the same value for both algorithms, enabling fair com-
parison. KCD uses the following additional parameters: the
kernel parameter σ and the parameter ν which control the
fraction of outliers.

Fig. 3 shows the evolution of the DER when the kernel
parameter σ increases. The minimum DER error is found at
σ = 0.51, where it equals 10.73%. For this experiment, we
choose m = mp=mf = 1.5s and ∆n = 0.2s, which are the
suitable values tested for GLR-BIC methods. The parameter
ν = 0.1, meaning that up to 10% of the data are considered
as outliers.
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Figure 3: Evolution of the DER for the KCD algorithm when
the kernel width parameter σ kernel increases.

While the above parameters (σ and ν) are specific to
the KCD algorithm, the following two tables summarize the
evolution of the sliding window’s length and step increment

which are both common parameters for GLR-BIC and KCD
based methods. Tables 2 and 3 permit to note that the values
of m = 1.5s and ∆n = 0.2s are suitable values.

Table 1: Evolution of DER for the KCD algorithm when m
increases for ν=0.1s, σ=0.51 and ∆n = 0.2s.

m (s) 0.5 0.7 0.9 1.5 2.5 3.5
DER (%) 14.70 13.83 19.21 10.73 16.65 25.36

Table 2: Evolution of the DER for the KCD algorithm as
∆n increases, for m = 1.5s, ν = 0.1 and σ = 0.51.

∆n (s) 0.1 0.2 0.3 0.4 0.5 0.6
DER (%) 24.42 10.73 11.93 15.27 12.85 22.68

As can be seen, the choice of the algorithm parameters
must be done carefully, by using some training data. Exper-
iments similar to those presented above may be conducted
in order to obtain the optimal parameters. More principled
strategies, such as cross-validation, may also be used.

4.2.2 Evaluation on various acoustic feature sets

In this subsection, we evaluate the impact of various acoustic
parametrization (described in Table 3) on the algorithm per-
formance. For each configuration, we select the parameters
optimized in such way to ensure a minimal DER.

The minimized DER obtained and the corresponding se-
lected parameters with theses acoustic parameterizations, for
both GLR-BIC and KCD, are presented in Tab.’s 4–5.

Table 3: Acoustic parameterizations tested with the KCD
algorithm.

Configuration Acoustic vector composition
C0 16 MFCCs
C1 16 MFCCs and 10 LPCCs
C2 C1 and 10 Linear Reflection coefficients
C3 C2 and 10 Filter bank coefficients
C4 16 MFCCs and 16 ∆MFCCs
C5 C4 and 16 ∆∆MFCCs

The number of speakers may be estimated by cutting
the dendrogram at the height that yields the desired num-
ber of speakers. Estimating accurately the number is one of
the major goals of Speaker Segmentation. It should be men-
tionned here that our speaker estimation method is not a
fully automated, as explained in [6], but we assume various
numbers of speaker, and we evaluate the corresponding DER.

Table 4: Comparison (KCD/GLR-BIC) on various parame-
trization kinds described in Table 3.

Config DERmin (%) estim. # of Spkrs
KCD RVG-BIC KCD RVG-BIC

C0 10.73 26.38 17 9
C1 8.37 21.18 17 9
C2 7.95 15.08 17 11
C3 10.90 15.26 9 9
C4 11.44 20.91 13 11
C5 8.63 14.30 19 11
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Table 5: Selected parameters on various parametrizations
Configuration Selected parameters

C0 m = 1.5s, σ = 0.51, ∆n = 0.2s.
C1 m = 2.0s, σ = 1, ∆n = 0.3s
C2 m = 1.5s, σ = 1, ∆n = 0.3s
C3 m = 2.5s, σ = 0.707, ∆n = 0.2s
C4 m = 0.7s, σ = 0.707, ∆n = 0.2s
C5 m = 0.9s, σ = 0.85, ∆n = 0.3s

Table 6: Results obtained on the evaluation corpora. The
KCD algorithm parameters are m = 1.5s, ν = 0.1, σ = 1
and ∆n = 0.3s. The parametrization selected is C2. Files
are (a) 20010228.2100-2200-MNB-NBW, (b) 20010217.1000-
1030-VOA-ENG and (c) 20010220.2000-2100-PRI-TWD.

File GLR-BIC KCD Estimated # of Speakers
(a) 25.60 14.34 23
(b) 20.17 12.28 25
(c) 22.69 14.27 22

As also explained in [6], we can estimate an optimal number
of speaker as the value that minimizes the diarization error.
In this context, the parametrization selected should be C2

corresponding to a DER of 7.95%.

4.3 Validation on evaluation files

This section presents the results obtained on the three eval-
uation files for both our KCD algorithm and the BIC-GLR
based method. Based on the previous experiments, the pa-
rameters selected for KCD are m = 1.5s, ν = 0.1, σ = 1
and ∆n = 0.3s. The parametrization selected is C2. Table 6
shows that our method outperforms the GLR-BIC based ap-
proach. The KCD best result averaged over the three files
is DER=13.63%. The same parameter values for m and ∆n

are selected for GLR-BIC and KCD. In fact, the results for
KCD displayed in Table 6 should be compared to those re-
ported in [6] (page 22, Table 7), where state-of-the art re-
sults are given for a number of other methods and where
the method-specific parameters are fine optimized, indepen-
dently of KCD.

5. CONCLUSIONS AND FUTURE WORK

The results reported above show that our new KCD algo-
rithm opens a promising research direction towards better
speaker segmentation algorithms. It is shown through sev-
eral experiments that our method outperforms the standard
GLR-BIC method. In this context it is important to note
that our results must be compared to those published in [6]
where state-of-the art results are given for a number of other
methods and where the method-specific parameters are fine
optimized, independently of KCD. In particular, our algo-
rithm being insensitive to the dimension of the acoustic fea-
tures, we can envisage the use of more informative, larger
dimensional acoustic features. It is also shown that our al-
gorithm is less sensitive to the acoustic feature redundancy
than the standard method. Further work will be devoted
to a better adequation of the acoustic features to the KCD
approach and to some prior processing to be implemented
before performing speaker segmentation (as other acoustic
macro-class segmentation methods do).
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