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ABSTRACT 
In this paper the problem of k out of n detection, be-

tween sequence of M random bits is addressed. The main 
application of the result is in a radar system, when we want 
to detect a target (with unknown time of arrival (TOA)), us-
ing binary integration. Another application is in ESM sys-
tems, when the system wants to detect the existence of a 
swept jammer or a gated noise jammer. But as any other 
mathematical problem, it may have some other applications. 

In this paper some simple equations for Pfa and Pd cal-
culation of a detector which detects the existence of sequence 
of n ones between M random bits, is derived. These equations 
are then used to find the optimal detector structure in some 
special cases. 

Besides, an approximate equation is derived for gen-
eral case of k out of n detector, and it is shown that, the ap-
proximation is almost accurate.  
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1. INTRODUCTION 

In 1950s and 60s some radar researchers suggested the 
binary integration to be used in radar systems [1,2]. In this 
technique all samples of received signal are converted to 
zero or one by comparing them with some fix or adaptive 
threshold. Then a moving window slides on these bits and a 
detection is declared when there exist at least k ones in the 
sliding window. Figure (1) shows this architecture. 

 
Figure (1) Binary Integration detection system 

The authors who suggested the binary integration were 
aware that, under Gaussian noise assumption, binary integra-
tion is not as powerful as the integration of the true samples 
amplitudes [3], but they argue that the suggested detector has 
a very simple structure and therefore it is very easy to be 
implemented[4].  

Nowadays the hardware problem is not so important as 
in the past but more investigations shows that, sometimes, 
binary integration is more powerful than a conventional ad-
der. It is especially true when the probability density function 
(p.d.f.) of noise has a long tail [5]. As a result the binary inte-
gration is a good means of detection (for example see [6,7]). 

For a k out of n detector, if we assume that in noise 
only case, the probability of a sample crossing the threshold 
(i.e.: having a bit equal to 1) is pN and the probability of 
complementary event (i.e.: a bit equal to zero) is qN, then the 
probability of declaring a detection in the noise only case 
(i.e.: Pfa) is calculated as: 
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But as it is mentioned in [8], the equation is true only 
when the time of arrival of the signal (i.e.: target echo) is 
known, which almost in all cases is not a true assumption.  

In a real scenario we have a sequence of M bits. A lot 
of the bits of this sequence are results of the noise only proc-
ess. And the target echo may be occur anywhere through this 
stream. In this case the calculations are not so simple as 
equation (1-1) indicates.  

We use the notation iy N∈  to show that ith bit is 

from noise process, and use iy S∈ to show the bit belongs 
to signal plus noise process. Using these notations, the hy-
pothesis testing problem is as: 
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A good detector for this problem is an sliding window 

with k out of n detection. In this case a false alarm will occur 
if under the noise only case a detection is declared anywhere 
in the sequence.  
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In this paper we will derive a precise solution for 
above system when the value of k is equal to n, and we will 
use this equation to find the optimum threshold values, in the 
case of n out of n detector. For general case of k out of n we 
will derive only some approximate formula. 

In our writings, the problem is explained for detection 
of target in a radar system, but it is valuable to mention that, 
we have a similar problem, when in an ESM system we want 
to detect a swept jammer or a gated noise jammer [9,10]with 
unknown time of arrival. 

The remaining parts of this paper are organized as fol-
lows. In section 2 we restate the problem, in order to clarify 
what is assumed and what we want to calculate. The problem 
is divided in two parts. The first part which is a n out of n 
detector is treated in section 3. In section 4 we focused on the 
next part of the problem which is a general k out of n detec-
tion.  

  

2. PROBLEM STATEMENT 

For more clarity we will explain the problem, here, in 
detail. There exist M samples of received signal (xi 
i=1,2,…,M). Under assumptions of noise only and signal 
plus noise, all the samples are independent. First all the sam-
ples are compared with a threshold (τ) and each sample is 
converted to a single bit (yi i=1,2,…,M).   

Under the noise alone assumption, the probability that 
a bit is equal to one is pN and the probability of a zero bit is 
qN. Under signal plus noise assumption these probabilities are 
pS and qS respectively.  

In this problem, the probability of false alarm is de-
fined as: the probability of having at least one detection in 
sequence of M bits, in noise only situation. And the prob-
ability of detection is defined as: the probability of having at 
least one detection when the detection window is completely 
or at least in half, placed on the signal plus noise samples.  

We first derive the equations for n out of n detector, 
and then focus on general case of k out of n detector. 

  

3. N OUT OF N DETECTION 

3 .1. Pfa calculation 
Defining Pm as the probability of (at least one) detec-

tion in first m samples, we can write: 
Pm=P(detection in first m samples | detection in first 
m-1 samples) 
       × P(detection in first m-1 samples) 
    + P(detection in first m samples ∩ no detection in 
first m-1 samples) 

(3-1-
1) 

11 ( )m mP P P A−⇒ = × +  
A= detection in first m samples ∩ no detection in 
first m-1 samples 

(3-1-2) 

Therefore we should calculate probability of event A in order 
to calculate Pm. If we want event A to occur, the stream of 
zeros and ones should be as shown in figure 2. 

 
Figure (2) True sequence for occurrence of event A 

Therefore we have: 
( ) ( ) n

N NP A P B q p= × ×  (3-1-3) 

But we know that: 

1( ) 1 m nP B P − −= −  (3-1-4) 

Therefore we have: 

1 1( ) (1 )n
m m N N m nP P q p P− − −= + × × −  (3-1-5) 

Here we obtained in a linear difference equation of order (n 
+ 1) which can be solved using methods introduces in sev-
eral mathematical books [11,12]. To solve this equation, we 
need the first (n + 1) initial values. These initial values are 
simply as below: 
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(3-1-6) 

Now, it is obvious that Pfa of this system equals Pm for 
m equal to the number of total samples. (i.e.: M) or: 

fa MP P=  (3-1-7) 

  
3.2. Pd calculation 

Assume that there exist L successive samples of signal 
plus noise process, some where between M bits. In general 
case, L may or may not be equal to the length of detection 
window (i.e.: n). The situation is shown in figure 3. 

 
Figure (3) L signal plus noise samples,  between noise samples 

In this case, detection may occur anywhere in the 
stream   of M samples, but detection is acceptable only if it is 
occurred near the signal samples. Therefore the detection 
probability depends on our definition about an acceptable 
detection. 

If we define an acceptable detection as a detection 
when the detection window ( which contains n samples) is 
completely placed on signal plus noise  samples, then Pd may 
be calculated directly from equations (3-1-5) and (3-1-6) by 
replacing pN and qN with pS and qS, and then we have: 
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d LP P=  (3-2-1) 

 But a better definition may be to accept detection 
when at least half of detection window is placed on signal 
plus noise samples. In this case we should modify equations 
(3-1-5) and (3-1-6) in order to be usable here. First, equation 
(3-1-6) is changed as below: 
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(3-2-2) 

Then we should correct equation (3-1-5) as below: 
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(3-2-3) 

This equation is linear, but time varying. However we can 
solve it easily, using a simple computer program. Here, we 
have: 

d L nP P +=  (3-2-4) 

 It should be mentioned that, these equations need 
some modification for the case of odd values of n, as well as 
the situation of the target samples are placed at the beginning 
or the end of the sequence of samples. 

Here, we have found two different equations for Pd, 
but it is almost obvious that, in practical situations there is a 
little difference between two results. Because, in a practical 
systems, the thresholds are set so that the probability of de-
tection become extremely low, when the detection window is 
on the noise samples (Pfa). 

In what follows, we show how to use the equations 
derived in sections 3-1 and 3-2 to find optimum n out of n 
detector for a problem: 
 
3.3. Designation of a sample detection system 

Assume that, we have 200 samples in each observa-
tion, and we want to detect target signals of duration of at 
least 10 samples with a SNR of at least 10 dB.  Besides we 
need the Pfa not to be greater than 10-4. Also we know that the 
probability density function of the noise and signal plus noise 
samples are Rayleigh and all samples are independent of 
others. Without loss of generality we can assume that the 
variance of noise samples is unity, and then if we select a 
threshold value equal to τ, we have: 

2exp( / 2)Np τ= −  (3-3-1) 

2 2exp( / 2 )S Sp τ σ= −  (3-3-2) 

( )SNRNS pp
1

=⇒  
(3-3-3) 

Figure 3 shows the relation between pN and pS for a SNR of 
10dB. 

10-10 10-8 10-6 10-4 10-2 100
10-1

100

pN

p S

 
Figure (4) relation of pN and pS for a SNR equal to 10dB, when noise and 

signal distributions are Rayleigh 
The next step to solve the problem is to find the re-

quired value of pN corresponding to each value of n (the 
length of detection window) in order to achieve a Pfa value of 
10-4 . But first we should remember that as long as we need 
to detect a target of length of 10 samples, using a window 
length of several times greater than 10 is not of any use. 
Therefore, we examine the values of n between 1 and 14. 
Using equations (3-1-5) and (3-1-6), the required values of 
pN are listed in table 1. Corresponding values of pS can be 
calculated directly from equation (3-3-3). 

Table (1) required values of pN for each n in order to achieve in a Pfa 
equal to 10-4 

n 1 2 3 4 5 6 7 

p 0.000 0.0007 0.00781 0.0273 0.0547 0.0898 0.1289 

n 8 9 10 11 12 13 14 

p 0.168 0.2031 0.2422 0.2773 0.3086 0.3398 0.3672 

At this point we are able to calculate Pd for each n, using 
equations (3-1-5) and (3-1-6) or (3-2-2) and (3-2-3). 
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Figure (5) Pd of detector for different pairs of n and τ 

Figure 5 shows the results, using both methods. As we 
see, in many points, there is a little difference between two 
results. It is apparent from this figure that, the best choice for 
the problem is to select  the highest value for the threshold 
(τ) and then searching for only a single 1 in the stream of 
zeros and ones. But it is true only if the probability distribu-
tion of both noise and signal are Rayleigh. In other situations, 
the table 1 is usable yet, but we can not use equation (3-3-3) 
to calculate the corresponding values of pS. In figure 6 we 
have calculated Pd for the case in which the noise distribution 
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is Weibull with a shape parameter of 0.5, but target distribu-
tion is Rayleigh. In this figure the SNR value is about 10 dB. 
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Figure (6) Pd of detector for different pairs of n and τ for a Weibull noise 

with a shape parameter of 0.5 
Here the optimum value of n is equal to 10. Again, in 

this figure we see that, in many points of the graphs, the dif-
ference between two methods is little, therefore it may be 
reasonable in many cases to use more easier equations (3-1-
5) and (3-1-6). 

 

4.  SOLUTION FOR GENERAL CASE OF K OUT OF 
N DETECTOR 

Similar to the case of n out of n detection, we can de-
fine Pm as the probability that in the first m bits, we have at 
least one detection and similar to equation (3-1-1) we can 
write: 
Pm=P(detection in first m samples | detection in 
 first m-1 samples)  
× P(detection in first m-1 samples) 
+ P(detection in first m samples ∩ no detection in first 
m-1 samples) 

(4-1) 

11 ( )m mP P P A−⇒ = × +  
A= detection in first m samples ∩ no detection in first 
m-1 samples 

(4-2) 

For event A to occur we need followings: 
1- A one in mth bit.(event A1) 
2- A zero in (m-n)th bit.(event A2) 
3- Exactly (n-k) zeros between (m-n+1)th and (m-1)th 

bits.(event A3) 
4- No detection in first (m-n-1) bits.(event A4) 
5- No detection in any sequence of n bits, beginning 

between (m-2n+1)th and (m-n-1)th bit.(event A5) 
This situation is shown in figure (7). Between above 

events, cases A1, A2, and A3, are independent of the others. 
And the calculation of their probability is easy. But unfortu-
nately cases A4 and A5 are not independent; as a result it is 
not easy to calculate the joint probability of these two events. 
We will show that in practical situations it is possible to use 
some approximations to be able to calculate corresponding 
probabilities 

 
Figure (7) the situation needed for first detection to occur in mth bit 

The following equation can be used for calculation of the 
probability of event A: 

1 2 3 4 5

( )
4 5

( ) ( ) ( ) ( ) ( )

( )k n k

P A P A P A P A P A A
n

p q p q P A A
k

−

= ∩

⎛ ⎞
= × × × ∩⎜ ⎟

⎝ ⎠

 

(4-3) 

In order to find the probability of A5, we can do as fol-
lows. If we assume that we have a total number of J zeros in 
first m bits and name the place of ith zero as Li, then for A5 to 
occur we need that: 

( 1)

1 ( 2)

1 ( 2 )
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( 1)

........
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J J k

J J k

J k J k

L m L m n

L m L m n
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− −

− − −

− + −

− ≥ − − −

− ≥ − − −

− ≥ − − −

 

(4-4) 

 We can calculate the probability of this event for any k 
and n, but it is obvious that the calculation is not simple 
when the k is many times less than n. The remaining problem 
is dependence of A4 and A5. In general it is not easy to calcu-
late the joint probability of these two events, but when m is 
less than 2n, the probability of A4 is equal to 1 and the joint 
probability of A4 and A5 is equal to probability of A5. In other 
case, when the k is near to n, and the n is large enough, then 
the assumption that A4 and A5 are independent is almost real-
istic. Therefore we can write: 

1 ( )

1 5

1
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k n k

m n

n
P A p q p q

n k
P P A

− −

− −
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≅ × ×⎜ ⎟−⎝ ⎠

× − ×

 

(4-5) 

In this equation, P(A5) depends on k and n and it can be 
calculated directly from (4-4). For example for k equal to n-1 
we have: 

1
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=
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(4-6) 

Similar equations can be calculated for any other case 
of n and k. Now if we assume the approximate equation of 
(4-5) as a true equation, again we have a difference equation 
for probability calculation. In figure 8 we have shown the 
difference between the result of above equation and the result 
of the simulations. Here we want to find at least 9 ones in a 
sequence of 10 bits. In these simulations, pN is equal to 0.45 
and qN is 0.55 and Pm is calculated for all values of m be-
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tween 10 and 2000. The simulation is based on 1,000,000 
samples of 2000 bits. As it is shown, the results of the equa-
tion have almost complete coincidence with the simulation 
results, and it shows the suggested approximation is good.  
But we should remember that the approximation is good only 
if the value of k is near to the value of n. otherwise, such an 
approximation may deviate greatly for true solution. 

 
(a) linear Scale 

 
(b) logarithmic Scale 

Figure (8) Probability of detection of  at least 9 ones in 10 successive bits, 
as a function of the length of the string (m)- for more precise comparison 

the results are shown both in linear and log scales 
(P(bit = 1) = 0.45 and the simulation is based on 106 samples of 2000 bits) 
 

5. CONCLUSION: 

In this paper we derived some simple equations to cal-
culate the performance of n out of n detector, when the time 
of arrival (TOA) of the signal is unknown. These equations 
are linear difference equations and some times they are time 
varying. But in any case we can use a simple computer pro-
gram to solve the equation. In the next part, we illustrate the 
use of these equations in order to design a powerful detector. 

Then we derived a general solution for k out of n de-
tector, with unknown time of arrival. In this case the equa-
tions are based on some approximations, but, as it was 
shown, in the case of k near to n, the result of approximation 
has almost complete coincidence with the true result. 

The calculations of this paper may be used in the 
problem of binary integration in radar detection or detection 
of gated noise jammers.  
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