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ABSTRACT

This paper presents the theory and lattice structures of a large class
of oversampled linear phase paraunitary filter banks. We deal with
FIR filter banks with real-valued coefficients in which all analysis
filters have the same arbitrary filter length and share the same sym-
metry center. Necessary existence conditions on symmetry polarity
of the filter banks are firstly derived. Lattice structures are devel-
oped for type-I oversampled linear phase paraunitary filter banks
[1]. Furthermore, these lattice structures can be proven to be com-
plete. Finally, several design examples are presented to confirm the
validity of the theory and lattice structures.

1. INTRODUCTION

Filter banks (FB) have found many applications in im-
age/audio/video processing, discrete multitome modulation and
channel equalization and so on [2, 3]. Most past research works
focused on critically sampled FBs which have the same number
of channels and subsampling factors. However, oversampled fil-
ter banks (OFB) whose number of channels P is greater than their
subsampling factor M, have gained great interests recently, because
they can provide more degree of design freedom, residual redun-
dancy left in subband signals and improved noise and erasure resis-
tance [4, 5]. In many applications, especially in image and video
processing, linear phase (LP) property of filters is always crucial.
Moreover, simple symmetric extension methods can be employed
for LP filters to accurately handle the boundaries of finite length
signals. For various practical purposes, only causal FIR oversam-
pled linear phase filter banks (OLPFB) with real-valued coefficients
are in consideration.

A few works have been done in such area. OLPFBs were firstly
studied in [6] for the restrictive cosine modulated case with inte-
ger oversampling ratio where oversampling ratio r = P/M must be
an integer. A more general OFB with integer oversampling ratio is
studied in [7]. For rational oversampling ratio case, a lattice struc-
ture for oversampled linear phase paraunitary filter banks (OLP-
PUFB) was reported in [8]. Recently, a more generalized lattice
structure has been reported in [1]. Similar lattice structures were
also given in [9, 10]. However, all these works were focused on a
restrictive class of OLPFBs in which the filter length L must be mul-
tiple of the subsampling factor M, i.e., L = KM. This restriction on
length is actually not necessary and leaves a large class of OLPFBs
out of their designs. Thus, it is highly desirable to remove this re-
striction and develop more general structures for OLPFBs which
can cover more possible design choices.

In this paper, we investigate the theory and lattice factorizations
for a large class of OLPPUFBs, in which all analysis filters have the
same arbitrary length L = KM +β (0≤ β < M), and have the same
symmetry center. For this class of OLPPUFBs, we first derive the
necessary restrictions on the filter symmetry polarity. Then, lat-
tice factorizations are developed for type-I OPLLUFBs. Compared
with the reported work in [8, 10], our result is more general and
can cover a larger class of OLPPUFBs than theirs. Furthermore,
our lattice structures are proven to be complete. Finally, two de-
sign examples are presented to confirm the validity of the proposed

structures. They also show the design flexibility with regard to filter
length.

The main motivation for this work is to design more flexible
OLPPUFBs which may give more possible choices for a given de-
sired application. In most traditional works [8, 1, 11, 10], the fil-
ter length must be multiple of M, which greatly limits the possi-
ble design of OLPPUFBs for large M. For example, for 8-channel
OLPPUFBs with M = 6, if the length is constrained to be less than
18 by the constraints of complexity, there are only two possible
choices in conventional designs. Although M can be made small
for OLPPUFBs, for example M = 2, from which conventional de-
sign methods have more choices on filter length, the subsampling
factor M is usually only a little bit less than the number of chan-
nels P, i.e., oversampling ratio r ≈ 1, to maintain subband sample
efficiency. The restriction becomes more severe for larger M. How-
ever, this restriction is from the traditional FB design methods, not
from OLPPUFBs. Our proposed design method can overcome this
drawbacks of conventional designs and provide more possible OLP-
PUFBs satisfying given constraint length and the length increment
among FBs can be made as small as possible. Continuing the above
example, the proposed design method can give 12 possible OLP-
PUFBs compared to only 2 choices in traditional method and can
offer better trade off between filter length and performance than tra-
ditional methods.

Notations: Bold-faced quantities denote matrices and vectors.
IM , JM and 0P×M denote the M ×M identity matrix, the M ×M
reversal matrix and P×M null matrix, respectively. For FIR FBs,
the P×M polyphase matrix can be written as E(z) = ∑K−1

i=0 e[i]z−i,
where e[K−1] 6= 0. K −1 is defined as the order of the polyphase
matrix, i.e., the FIR FB. It is related to the maximum possible length
L of the analysis filters by L = KM. For arbitrary P×M real-valued
constant matrix A and matrix polynomial A(z) with real-valued
coefficients, we say A and A(z) are orthogonal and paraunitary
(PU), respectively, if the M×P matrix AT and Ã(z) satisfy AT A=

IM and Ã(z)A(z) = IM , respectively, where Ã(z) = AT (z−1).

2. NECESSARY CONDITIONS FOR OLPPUFBS

Consider a P-channel OLPPUFB with subsampling factor M and
equal filter length L = KM + β (0 ≤ β < M) as shown in Fig. 1.
Without loss of generality, we can always arrange the P channel

Figure 1: The polyphase form of a P-channel FB with subsampling
facotr M



linear phase filters in such an order that the first ns filters are sym-
metric, while the other na = P− ns are antisymmetric filters. The
associated P×M analysis polyphase matrix E(z) should satisfy the
LP condition [12],

E(z) = z−(K−1)DPE(z−1)ĴM(z) (1)

where

ĴM(z) =

[

z−1Jβ 0β×(M−β )
0(M−β )×β JM−β

]

(2)

and DP = diag(Ins ,−Ina ). With the LP and PU properties, the nec-
essary existence conditions on symmetry polarity of OLPPUFBs
can be obtained which are stated in the following theorem.

Theorem 1. For the class of OLPPUFBs stated above, ns and na
have the following bounds:

1. When M and β are both even, and K is arbitrary (K ≥ 1),
M/2 ≤ ns ≤ P−M/2 and M/2 ≤ na ≤ P−M/2.

2. When M is even and β is odd, and K is arbitrary (K ≥ 1), M/2+
1 ≤ ns ≤ P−M/2 and M/2 ≤ na ≤ P− (M/2+1).

3. When M is odd and β is even,
(a) If K is even, (M + 1)/2 ≤ ns ≤ P− (M + 1)/2 and (M +

1)/2 ≤ na ≤ P− (M +1)/2.
(b) If K is odd, (M + 1)/2 ≤ ns ≤ P− (M − 1)/2 and (M −

1)/2 ≤ na ≤ P− (M +1)/2.
4. When M is odd and β is odd,

(a) If K is even, (M + 1)/2 ≤ ns ≤ P− (M − 1)/2 and (M −
1)/2 ≤ na ≤ P− (M +1)/2.

(b) If K is odd, (M + 1)/2 ≤ ns ≤ P− (M + 1)/2 and (M +
1)/2 ≤ na ≤ P− (M +1)/2.

Proof. For case (1) assume M = 2m and β = 2l, E(z) must have
the following form according to the LP condition (1),

[

S0(z) z−KS0(z−1)Jl S1(z) z−(K−1)S1(z−1)Jm−l
A0(z) −z−KA0(z−1)Jl A1(z) −z−(K−1)A1(z−1)Jm−l

]

(3)

where matrices S0(z), A0(z), S1(z) and A1(z) have size ns × l,
na × l, ns × (m− l) and na × (m− l), respectively. Then, from the
PU condition Ẽ(z)E(z) = I2m, we can obtain a system of matrix
polynomial equations.

ST
0 (z−1)S0(z)+AT

0 (z−1)A0(z) = Il

ST
0 (z−1)S0(z−1)−AT

0 (z−1)A0(z−1) = 0

ST
1 (z−1)S1(z)+AT

1 (z−1)A1(z) = Im−l

ST
1 (z−1)S1(z−1)−AT

1 (z−1)A1(z−1) = 0

ST
0 (z−1)S1(z)+AT

0 (z−1)A1(z) = 0

ST
0 (z−1)S1(z−1)−AT

0 (z−1)A1(z−1) = 0

By evaluating these equations at z = 1, the following equations
can be obtained: ST

0 (1)S0(1) = Il = AT
0 (1)A0(1), ST

1 (1)S1(1) =

Im−l =AT
1 (1)A1(1) and ST

0 (1)S1(1)=0=AT
0 (1)A1(1). Finally,

by defining matrix Ts , [S0(1) S1(1)] which has size ns×m, it can
be seen that rank(Ts) = rank(TT

s Ts) = rank(Im) = m. However,
m = rank(Ts) ≤ min{ns,m} ≤ ns. Similar argument is also appli-
cable to na by defining Ta , [A0(1) A1(1)]. Using the condition
of ns + na = P, we can obtain the bounds in case (1). Similar proof
can also be applicable to other cases in Theorem 1. For some cases,
we need to evaluate PU conditions at both z = ±1 to get tighter
bounds.

Note that Theorem 1 is applicable to both critically sampled and
oversampled systems. These necessary conditions on symmetry po-
larity of filters are a very useful guideline for FB design. It permits
the FB designer to narrow down the solution space and to avoid
impossible design specifications. It also helps to explain why only
some solutions exist and plays a important role in the development
of design. To our knowledge, it is the most general form which can
cover previous works [12, 8] as special cases. With P = M, one
can check it is consistent with the results in [12]. Imposing β = 0,
it is also consistent with the results in [8, 1]. However, the cases
of (2), (3b) and (4b) in Theorem 1 are new results. This theorem
also reveals the increased design freedom of oversampled systems
with length not constrained to be multiple of M. Recall that in crit-
ically sampled systems, even-channel LPFB with equal length can-
not have odd filter length. However, the cases (2), (3b) and (4a) of
Theorem 1 indicate that it can exist in oversampled systems. Ac-
tually, compared to the length conditions in [12], there is no length
constraint for OLPFB. Compared to reported works [6, 8, 1, 9, 10],
our scheme can yield real arbitrary filter length for type-I OLP-
PUFB, which in turn can provide more possible choices to be se-
lected in desired applications than before.

3. LATTICE STRUCTURES FOR OLPPUFBS WITH
ARBITRARY FILTER LENGTH

In this section, we deal with lattice factorizations for analysis
polyphase matrix E(z) of OLPPUFBs. It can be shown easily that
the general lattice construction approach can be applied here [12]-
[15]:

E(z) = GK(z)GK−1(z)GK−2(z) · · ·G1(z)E0(z) (4)

where the starting block E0(z) with order N0 and length N0M +
β (with order N0 − 1 and length N0M if β = 0) has both LP and
PU properties, and each block Gi(z) with order N1 can propagate
both LP and PU properties and increase filter length N1M. Such a
cascade form would finally generate an OLPPUFB with filter length
L = (KN1 + N0)M + β . The LP propagating block in [1] can be
used here for Gi(z). The difference between our factorization and
previous ones is the starting block E0(z). Contrary to [8, 1], E0(z)
cannot be made order zero if β 6= 0, i.e., constant matrix, which is
treated as a trivial case by us because it would impose multiple of
(M −β ) zero filter coefficients at fixed positions. Thus, E0(z) has
at least order one for the case of β 6= 0, i.e., N0 ≥ 1.

A valuable classification of OLPFBs was given in [1] according
to the order of Gi(z). We adopt their classification here, namely
type-I system with ns = na and type-II system with ns 6= na. In
this paper, we study type-I OLPPUFBs with arbitrary filter length
in detail. For type-I system, Gi(z) has the following form,

Gi(z) =
1
2
ΦiWΛ(z)W (5)

=
1
2

[

Ui 0
0 I

][

I I
I −I

][

I 0

0 z−1I

][

I I
I −I

]

where each submatrix has size p× p and Ui is an square orthogonal
matrix. After each stage Gi(z), the filter length can be increased by
M. In order to have filter length L = KM + β for E(z), the staring
block E0(z) should be a LPPU system with length M + β , i.e., an
order one matrix polynomial with linear phase. We study them for
even and odd length, respectively.

3.1 OLPPUFBs with Even Length
In this subsection, we investigate the lattice structure for type-I
OLPPUFBs with even length L = KM + β . They consist of three
possible cases. One is the case of even M and even β , the other two
are even K and even β , or odd K and odd β both with odd M. We
firstly study the case of even M = 2m and even β = 2l (0 ≤ l < m).
By LP condition (1), it can be seen easily that E0(z) should have



Ee
0(z) =

1√
2

[

U00Γp + z−1U00ΓmJ f+α
1√
2
(U02 + z−1U02J2g−2α) U00Γm + z−1U00ΓpJ f+α U01 U01Jm−l

V00Γp − z−1V00ΓmJ f+α
1√
2
(V02 − z−1V02J2g−2α ) V00Γm − z−1V00ΓpJ f+α V01 −V01Jm−l

]

(6)

=
1√
2

[

U00 U02 U01 U01Jm−l z−1U02J2g−2α z−1U00J f+α
V00 V02 V01 −V01Jm−l −z−1V02J2g−2α −z−1V00J f+α

]













Γp 0 Γm 0

0 1√
2
I2g−2α 0 0

0 0 0 I2m−2l
0 1√

2
I2g−2α 0 0

J f+αΓmJ f+α 0 J f+αΓpJ f+α 0













=
1√
2

[

U00 U02 U01 U01Jm−l U02J2g−2α U00J f+α
V00 V02 V01 −V01Jm−l −V02J2g−2α −V00J f+α

][

I f+2g−α+2m−2l 0

0 z−1I f+2g−α

]

Γe =
1√
2
Φe

0Λe(z)Γe (7)

the following form,

Ee
0(z) =

1√
2

[

S00 + z−1S00J2l S01 S01Jm−l
A00 − z−1A00J2l A01 −A01Jm−l

]

(8)

where S00 and A00 have size p× 2l, S01 and A01 have size p×
(m− l). By further imposing the PU condition, i.e., Ẽe

0(z)E
e
0(z) =

IM , we can obtain a system of matrix equations,

ST
00S00 +J2lS

T
00S00J2l = I2l = AT

00A00 +J2lA
T
00A00J2l (9)

ST
01S01 = Im−l = AT

01A01 (10)

ST
00S01 = 0 = AT

00A01 (11)

From these equations, we can establish a very useful algebraic prop-
erty of matrices S00 and A00.

Theorem 2. The matrices S00 and A00 have the same bounds on
their ranks: l ≤ rank(S00),rank(A00) ≤ l +min{l, p−m}.

Proof. From the PU equation of (10), we know that S01 is an or-
thogonal matrix with rank(S01) = m− l. Define p× (m+ l) matrix
Ts , [S00 S01]. Along with PU equation of (10) and (11), it can be
shown easily that

TT
s Ts =

[

ST
00S00 0
0 Im−l

]

Because of the rank equality, i.e., rank(ST
00S00) = rank(S00), we

have rank(Ts) = rank(TT
s Ts) = rank(S00)+ m− l ≤ min{p,m +

l}, i.e., rank(S00) ≤ l − m + min{p,m + l} = l + min{l, p −
m}. However, by the PU equation (9) and Sylvester’s
rank inequality [16], we can obtain 2l = rank(ST

00S00 +

J2lS
T
00S00J2l) ≤ 2rank(ST

00S00) = 2rank(S00) which means the
inequality, rank(S00) ≥ l. Combining these two inequalities, the
rank condition for S00 can be obtained. Similar proof is also appli-
cable to matrix A00.

From the above analysis on the rank of S00, we propose a pa-
rameterized form for S00 to help factorization,

S00 = [U00Γp
1√
2
U02 U00Γm] (12)

In addition, define two variables for indicating dimension of various
matrices,

f , max{l− (p−m),0}, g , l− f (13)

Thus U00 has size p×( f +α), U02 has size p×(2g−2α) and 0 ≤
α ≤ g. Matrices Γp = (Γ1 +Γ2)/2 and Γm = (Γ1 −Γ2)J f+α/2,
where Γ1 and Γ2 are two arbitrary square orthogonal matrices with
size f +α . Apply similar parameterized form for A00 with matrices
V00 and V02 with the same dimension as U00 and U02. By such

parameterization, it can be shown that Ee
0(z) has form in (6) at the

top of this page, where Φe
0 can be further factorized in the form (14)

Φe
0 =

1√
2

[

U0 0
0 V0

][

Im+g−α Im+g−α
Im+g−α Im+g−α

][

Im+g−α 0
0 Jm+g−α

]

(14)
where matrices U0 = [U00 U02 U01] and V0 = [V00 V02 V01]. It
can be shown easily that such factorization can ensure PU property
of Ee

0(z) as long as U0 and V0 are square or rectangular orthogo-
nal matrices with orthogonal columns because Γe is an rectangular
orthogonal matrix with orthogonal columns. It can also be shown
easily that our proposed parameterized form for S00 in (12) is a
solution of Eq. (9). Note that this factorization is also applica-
ble to critically sampled systems, i.e., P = M, covering it as a spe-
cial case of ours, in which it degenerates into structure in [12] with
α = 0 due to rank(S00) = l. This also shows the design flexibil-
ity of OLPPUFBs with more possible values of α , i.e., 0 ≤ α ≤ g.
Furthermore, if β = 0, i.e., filter length L = KM, it degenerates into
structure in [8] for oversampled systems, or structure in [13] for
critically sampled systems. The remaining two cases with odd M
are discussed in section 3.3.

3.2 OLPPUFBs with Odd Length
In this subsection, we investigate a lattice structure for type-I OLP-
PUFBs with odd length. They also consist of three possible cases.
One is the case of even M and odd β , the other two are even K and
odd β , or odd K and even β both with odd M. We firstly study
the case of even M = 2m and odd β = 2l − 1 (1 ≤ l ≤ m). By LP
condition (1), it can be seen that E0(z) should have the following
form,

Eo
0(z) =

1√
2

[

S00 + z−1S00J2l−1 S01 q S01Jm−l
A00 − z−1A00J2l−1 A01 0 −A01Jm−l

]

(15)

where S00 and A00 have size p× (2l −1), S01 and A01 have size
p× (m− l), q and 0 are p×1 column vectors. By further imposing
the PU condition, i.e., Ẽo

0(z)E
o
0(z) = IM , we can obtain a system of

matrix equations,

ST
00S00 +J2l−1S

T
00S00J2l−1 = I2l−1 = AT

00A00 +JAT
00A00J

ST
01S01 = Im−l = AT

01A01

ST
00S01 = 0 = ST

00S01

ST
00q = 0, ST

01q = 0, qT q = 2

From these equations, we can also establish the algebraic property
of matrices S00 and A00.

Theorem 3. The matrices S00 and A00 have same bounds on their
ranks: l ≤ rank(S00),rank(A00) ≤ l +min{l−1, p−m−1}.

The proof is similar to Theorem 2 and omitted here. From the
above analysis on the rank of S00, we also propose a parameter-
ized form for S00 = [U00Γp

1√
2
U02 U00Γm], where U00 has size



Eo
0(z) =

1√
2

[

U00Γp + z−1U00ΓmJ f+α
1√
2
(U02 + z−1U02J2g−2α ) U00Γm + z−1U00ΓpJ f+α U01

√
2u U01Jm−l

V00Γp − z−1V00ΓmJ f+α
1√
2
(V02 − z−1V02J2g−2α ) V00Γm − z−1V00ΓpJ f+α V01 0 −V01Jm−l

]

(16)

=
1√
2

[

U00 U02 U01
√

2u U01Jm−l z−1U02J2g−2α z−1U00J f+α
V00 V02 V01 0 −V01Jm−l −z−1V02J2g−2α −z−1V00J f+α

]













Γp 0 Γm 0

0 1√
2
I2g−2α 0 0

0 0 0 I2m−2l+1
0 1√

2
I2g−2α 0 0

J f+αΓmJ f+α 0 J f+αΓpJ f+α 0













=
1√
2

[

U00 U02 U01
√

2u U01Jm−l U02J2g−2α U00J f+α
V00 V02 V01 0 −V01Jm−l −V02J2g−2α −V00J f+α

][

I f+2g−α+2m−2l+1 0

0 z−1I f+2g−α

]

Γo =
1√
2
Φo

0Λo(z)Γo (17)

p× ( f + α), U02 has size p× (2g− 1− 2α) and 0 ≤ α ≤ g− 1.
Matrices Γp and Γm are defined in the same way as before. Ap-
ply similar parameterized form for A00 with matrices V00 and V02
with the same dimension as U00 and U02, respectively. By such
parameterization, it can be shown that Eo

0(z) has form in (16) at the
top of this page, where Φo

0 can be further factorized in the form
(18), where

Φo
0 =

1√
2

[

U0 0
0 V0

]





Im+g−α 0 Im+g−α
0

√
2 0

Im+g−α 0 Im+g−α





[

Im+g−α+1 0
0 Jm+g−α

]

(18)
where matrices U0 = [U00 U02 U01 u] and V0 = [V00 V02 V01].
It can be shown easily that such factorization can guarantee PU
property of Eo

0(z) if U0 and V0 are orthogonal matrices with or-
thogonal columns because Γo is an orthogonal rectangular matrix
with orthogonal columns. It should be pointed out that this fac-
torization is a new result. It is not applicable to critically sampled
systems because even-channel critically sampled LPFBs with equal
filter length cannot have odd length. On the contrary, oversampled
systems don’t have this constraint. This reveals the higher design
freedom of OLPPUFBs. The above result is for even M. The re-
maining two cases with odd M are discussed in the next section.

3.3 Alternative Structures
In this section, we present alternative structures of odd M for arbi-
trary filter length to the above two even M cases. Firstly, note that
although M is constrained to be even, we can still obtain arbitrary
filter length for OLPPUFBs in consideration. For the case of odd
M, one simple solution is to double M so as to let it be an even
number and correspondingly to double the number of channels P to
maintain the oversampling ratio r. However, this would increase the
dimension severely for large odd M, like 8-channel FB with M = 7.

An alternative and better solution presented here is to develop a
specific lattice structure for odd M = 2m+1. If β is even, i.e., β =
2l (0 ≤ l ≤ m), the starting block E0(z) should have the following
form by the LP condition (1),

E0(z) =
1√
2

[

S00 + z−1S00J2l S01 q S01Jm−l
A00 − z−1A00J2l A01 0 −A01Jm−l

]

(19)

On the other hand, if β is odd, i.e., β = 2l + 1 (0 ≤ l ≤ m), E0(z)
should have the following form,

E0(z) =
1√
2

[

S00 + z−1S00J2l+1 S01 S01Jm−l
A00 − z−1A00J2l+1 A01 −A01Jm−l

]

(20)

It can be seen that the E0(z) of these two odd M cases have the
same structural form as before in (15) and (8), just with different
dimensions for some submatrices. The differences are denoted by
the subscripts in the reversal matrices. Thus, we can also obtain
the similar rank conditions and lattice factorizations for them along

with previous analysis. Due to limited space, the details are omitted
here.

It is clear that our proposed lattice structures for type-I OLP-
PUFBs with equal filter length L = KM + β exist for all possible
even or odd K, M and β . Therefore, the filter length L can be made
really arbitrary, i.e., removing the constraint of L = KM. Note that,
this cannot be achieved in critically sampled systems because of
their length constraints, for example, even-channel critically sam-
pled LPPUFBs can only have equal even filter length.

3.4 Completeness of the Structure
It is clear that our proposed lattice structures for type-I OLPPUFBs
with equal filter length L = KM + β exist for all possible K, M and
β . Furthermore, a strong result is that the converse is also true, i.e.,
our proposed structures can cover all such FBs in consideration. We
conclude this section with the following theorem on the complete-
ness issue.

Theorem 4. The polyphase matrix E(z) of a type-I OLPPUFB with
equal filter length L = KM + β can always be factorized as in (4),
where its factors are given by (5) and (7) or (17).

Proof. This theorem can be rephrased as follows: if there exists an
analysis polyphase matrix E(z) of an OLPPUFB with equal filter
length L = KM +β , which must satisfy LP condition (1), then E(z)
can always be factorized as in (4), whereas E0(z) can always be fac-
torized as in (6) or (16). The former part is achieved by performing
the order reduction process as presented in [17, 12, 8]. According
to [15, 1], the design space is still complete with the simplification
of Gi(z) in (5). After K − 1 order reduction steps performed by
Gi(z), the remainder is an order one OLPPUFB with length M +β
which takes the form in (8) or (15) for different settings of M and
β . Thus, we need only prove that E0(z) can always be factorized
as in (6) or (16) with different dimensions for different settings of
M and β . A similar proof for only even-channel critically sampled
FBs with even subsampling factor M was given in [12]. For over-
sampled FBs, due to orthogonality of matrices S01 and A01, we
should just show that our proposed parameterized form for matrix
S00 can span the space of all possible S00 for both even and odd
values of M and β , respectively. The essential idea for its proof is
the rank condition of matrix S00 stated in Theorems 2 and 3. For
the case of even M and β , the rank of our parameterized form of S00
is rank(S00) = rank([U00,U02]) = l + g−α due to orthogonality
of matrix U0. Within all possible values of α , our parameterized
form of S00 satisfies the rank condition stated in Theorem 2 and
can achieve the lower and upper bounds by α = g and α = 0, re-
spectively. Thus, it spans the space of all possible S00. The proof is
also applicable to matrix A00. This completes the proof for the case
of even M and β . Similar proof can be done for the other cases.

4. DESIGN EXAMPLES

Two preliminary design examples of our proposed factorization are
provided in this section. The chosen optimization criterion is mini-
mization of the stopband attenuation which is a classical cost func-



tion in FB design and optimization. Denote the passband of the ith
filter Hi(z) as [ωi,L,ωi,H ] and the transition bandwidth as ε . The
cost function to be optimized is,

Cstopband =
P−1

∑
i=0

(

∫ ωi,L−ε

0
|Hi(e jω )|2dω +

∫ π

ωi,H+ε
|Hi(e jω )|2dω

)

ε is selected to be 0.1 for all the following examples.
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(a) M = 8, β = 0, L = 24
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(b) M = 6, β = 0, L = 24
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(c) M = 6, β = 3, L = 21
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(d) M = 6, β = 4, L = 22

Figure 2: Design examples of 8-Channel LPPUFBs with different
subsampling factors M and different β .

Magnitude responses of several design examples on 8-channel
LPPUFBs with different subsampling factors M and different β , i.e.,
different filter lengths L = KM+β , are shown in Fig. 2. A critically
sampled LPPUFB with β = 0 and K = 3, i.e., length L = 24 is
shown in Fig. 2(a). An OLPPUFB with M = 6, β = 0 and K = 4,
i.e., length L = 24 is shown in Fig. 2(b). These two cases are two
special cases of our proposed OLPPUFBs, which were studied in
[13] and [8]. The other two design examples are new ones. The
third case with M = 6, β = 3 and K = 3, i.e., filter length L = 21
is shown in Fig. 2(c). Another case with M = 6, β = 4 and K = 3,
i.e., L = 22 is shown in Fig. 2(d). It is clear that these two cases
have filter length L which is not multiple of subsampling factor M.
Note that these two cases cannot be obtained by previous design
methods in [6, 8, 1, 9, 10]. These two preliminary design examples
confirm the validity of our proposed lattice structures. They also
show the higher design flexibility on filter length L, which can be
chosen freely. To our knowledge, the lattice structures and designs
for OLPPUFBs with arbitrary filter length is firstly addressed by our
proposed methods. In particular, they are more general so that it can
cover the class of LPFBs in [13, 12, 8] as special cases.

5. CONCLUSIONS

This paper has presented the theory and lattice structures for a large
class of OLPPUFBs, where all analysis filters have the same length
L = KM + β (0 ≤ β < M) and symmetry center. Necessary exis-
tence conditions on the filter symmetry polarity are investigated.
Lattice structures for type-I OLPPUFBs with arbitrary filter length
are developed. Compared with the reported works [8, 10], our re-
sult is more general and can cover a larger class of OLPPUFBs than
theirs. Furthermore, our lattice structures are proven to be complete,
i.e., all type-I OLPPUFBs can always be factorized by our lattice
structures. To our knowledge, this is so far the most general type-I

OLPPUFBs in the literature. Finally, several design examples are
presented to demonstrate the validity of our new lattice structures.
They show the design flexibility for arbitrary filter length L.
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