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ABSTRACT 

 
We propose a new method to compensate for the distortion 
of any interpolation function. This is a hybrid method based 
on the iterative method proposed by one of the authors 
where modular harmonics are utilized instead of simple 
lowpass filter. The hybrid method is also improved by the 
Chebyshev acceleration algorithm. The proposed technique 
drastically improves the convergence rate with less 
computational complexity while it is robust to additive noise. 
This method could be used in any 1-D signals which must be 
interpolated during the process. 
 

1.       INTRODUCTION 
 
There are many applications in digital signal processing and 
communication systems that require the reconstruction of an 
analog signal from its discrete time samples using D/A 
converters. Several methods with different names were 
introduced in the literature during 1970’s and 1980’s (refer 
to [1] for a complete survey of interpolation techniques). 
Sample-and-Hold (S&H: zero-order-hold) and Linear 
Interpolation (LI: first-order-hold) were dominant methods 
before. Polynomial interpolation and B-splines (Cubic 
splines) are the usual interpolation functions [2-4].  
These interpolators create some distortion at the Nyquist rate 
after low pass filtering, especially when S&H or LI are 
utilized. The advantage of these types of interpolators is their 
simplicity making them proper for practical use in iterative 
techniques. There are several methods to compensate for this 
kind of distortion such as inverse sinc filtering, over-
sampling, nonlinear and adaptive algorithms [5-6], a 
modular method [7], and successive approximation using 
iterative methods [8-9]. The modular method is compared to 
the inverse sinc filtering in [7]. This reference shows that 
using a few numbers of modules, the performance of the 
modular method excels the inverse filtering as far as noise is 
concerned. Over-sampling is not a practical solution due to 
its bandwidth requirement. The iterative method [8] 

outperforms the modular method at the cost of more 
computation.  
   We are proposing a hybrid method that combines the 
iterative and the modular methods. The advantages of this 
hybrid method are fast convergence rate, low complexity and 
delay, and robustness against additive noise. In the sequel, 
we will briefly describe the modular and the iterative 
methods and then prove the convergence of the hybrid 
method. Noise analysis and sensitivity will be discussed, and 
simulation results and comparison with other methods will 
be presented. Computational complexity comparison will 
conclude this paper. 
 

2.        BACKGROUND 
 
Before explaining our proposed method, we need to go over 
the previous methods. Below we will describe the modular 
and the iterative methods before the proposed hybrid 
method. 
 
2.1.     The Modular Method 

In this method [7], the interpolated signal s(t) (S&H, LI or 
Spline) is mixed with a sum of cosine waves and then passed 
through a lowpass filter. The output can be written as 

)]/2cos(2...)/2cos(21)[()(ˆ TtNTttstxs ππ ++=    (1) 

)}(ˆLPF{)(ˆ tx  tx s=     (2) 
where T is the sampling period and N represents the number 
of modules which are multiplied to s(t). Moreover, s(t) is the 
interpolation of x(t) samples and )(ˆ txs  is the approximation 
of ideal x(t) samples. In fact, the sum 

Tt
TtN

T
stN

s /sin
/)1(sin)2cos(21

1 π
ππ +

=+ ∑
=

                (3) 

is the first N+1 harmonics of the Fourier series expansion of 
the impulse train. Therefore, as N increases, )(ˆ txs  converges 
to the ideal samples of x(t) and )(ˆ tx  converges to x(t). Fig. 1 
describes the modular method. 
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Figure 1: The Modular Method 

2.2.     Iterative Method 
The iterative method is given by 

xk+1 (t)=λPSx(t)+(I-λPS)xk(t)             (4) 

where λ is the relaxation parameter that determines the 
convergence rate. xk(t) is the kth iteration and x0(t) can be 
any function of time. But x0(t)= (t)x̂ =PSx(t) is the natural 
choice for faster convergence. P is a band-limiting operator 
and S is a sampling process, e.g., S can be S&H or LI and P 
can be a lowpass filter.  Redefining the operators G=λPS and 
E=I-G, we can rewrite (4) as 

xk+1=Gx+(I-G)xk= )(ˆ tx +Exk    (5) 
 It is straightforward to show that (5) can be written as 

)(ˆI)+E+...+E+(E=)( 1-kk txtxk          (6) 

If G is a linear operator, we can write 

    E-I
E-I=I+E+...+E+E

1k
1-kk

+
  (7) 

If the operator norm ||E||<1, by increasing the number of 
iterations (k), (7) approaches the inverse system G-1 [10], 
therefore, xk(t) will converge to x(t). By setting λ correctly, 
we can satisfy this constraint in general. A detailed proof of 
convergence and its relationship with λ is given in [8-10]. 
 

 
3.      THE PROPOSED HYBRID METHOD 

 
3.1.      Description 

We propose to combine the modular and iterative Methods.  
We incorporate the modular Method   in each iteration step 
before applying the lowpass filter. In other words, the P 
operator is no longer a simple lowpass filter. Instead, it 
consists of a Modular interpolator. Because the Modular 
method outperforms simple lowpass filtering, it makes the 
iterative method to converge much faster. We shall see in the 
simulation section that only one module is sufficient for this 
phenomenal improvement. Below we shall prove the 
convergence for the S&H interpolation. The proof for other 
types of interpolation is similar. 

3.1.1. Proof of Convergence for the S&H interpolation:  

For the P and S operators defined for S&H, we can write 

(t)x(t)-x(t)+x(t)x mkkmk PPP=1 λλ+      (8) 

where xm and xmk are defined as 

∑∑
=

+
n

N

s
m ) /-

T
t-n(x(nT)

T
st(t)=x 21Π])2cos(21[

1

π    (9) 

∑∑
=

+
n

k

N

s
mk ) /-

T
t-n((nT)x

T
st(t)x 21Π])2cos(21[=

1

π   (10) 

(.)Π is a rectangular function used for S&H. T is the 
sampling interval, and N is the number of mixed harmonics. 
xk(t) will converge to x(t) in the limit, if the operator E is a 
contraction, i.e., ||E||<1. This implies [8] 

||x||x||x||x kkkk 11 −+ −<−   (11) 

Substituting (8) in (11), we can write 

||||||)(PS|| 111 −−− −≤−−− kkkkkk xxrxxxx λ  (12) 

where 0≤r<1. The left-hand side of (12) can be written in the 
frequency domain, using the Parseval’s theorem: 

||)
T
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i
k-k

N

-Ns
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=
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      (13) 
where Π(fT) is an ideal lowpass filter with the cut-off 
frequency of f=1/(2T). By assuming the sampling rate is at 
the Nyquist rate, (13) becomes 

||}sinc-].{1[|| 1 ∑
=

N

-Ns
k-k (fT-s)(f)(f)-XX λ    (14) 

Hence, 

|sinc-1|max|||| 1 ∑
=

≤
N

-Ns
k-k (fT-s)(f)(f)-XX λ   (15) 

To satisfy (12), it is required that 
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1|sinc-1max0 <=< ∑
=

N

-Ns
(fT-s)|r λ    (16) 

In the case of one module utilization, the maximum occurs at 
fc=1/2T and at this point for λ=1, we get r = 0.06 < 1. Thus, 
the proposed hybrid method converges to the original signal. 
At λ=1 comparing r=0.06 with r=1-sinc(1/2)=0.36 in the 
conventional iterative method, we expect a drastic 
convergence rate improvement. By increasing the number of 
harmonics in the modular technique r tends to zero for λ=1, 
and thus faster convergence is expected. 
For the best convergence rate, the relaxation parameter λ 
should be chosen to minimize r, thus at the Nyquist rate, the 
optimal value for λ for the case of one additional harmonic is 

0.94)sinc1/(=
1

1
2
1 ≅∑

=-s
opt -s)(λ                 (17) 

For other types of interpolations, the derivations are similar. 
 
3.2.     Noise Analysis 

Suppose that the proposed hybrid method is implemented 
and used in a noisy environment. For the sake of analysis 
white noise is added to the signal at each iteration stage. In 
this section we will analyze and compare the effect of noise 
for the hybrid and traditional methods. 

For the traditional iterative method, we can write 

)()(P-(t)P+)(P=)(1 tntxxtxtx kskksk ++ λλ   (18) 

where nk(t) is the additive white Gaussian noise in the kth 
iteration, xs(t) and xsk(t) are the S&H versions of x(t) and 
xk(t), respectively. The necessary constraint on the 
convergence is the contraction inequality given in (11). 
Substituting (18) in (11), we obtain 

||||||)(|| 1111 −−−− −≤−+−−− kkkkkkkk xxrnnxxPSxx λ   (19) 

By invoking the triangle inequality, it is sufficient to have 

||||||||||)(|| 1111 −−−− −≤−+−−− kkkkkkkk xxrnnxxPSxx λ   (20) 

Assuming nk(t) and nk-1(t) are uncorrelated, similar to 
the previous section, the following inequality  

||||2)|)(sinc1|(|||| max1 nfTrXX kk ≥−−− − λ    (22) 

should be satisfied for 0 ≤ r <1. Considering the optimum 
λ, for the worst case we have 

||||382.0))2/1(sin(||||
2
1|||| 11 −− −≅−≤ kkkk XXcXXn λ    (23) 

This implies that as long as the noise standard deviation 
satisfies (23), the iteration will converge. 

Now, consider the suggested method. Similar to (22) we 
can state that 

||||2)|sinc1|(|||| max1 n(fT-s)rXX
N

-Ns
kk ≥−−− ∑

=
− λ   (24) 

 is a sufficient constraint for the convergence. In the case of 
one module implementation and optimized relaxation factor, 
for the worst case we have 

||X||X||n|| kk 12
1

−−≤    (25) 
Comparing (25) to (23), we conclude that the proposed 

hybrid method can tolerate more noise power. Notice that the 
iterative method always tends to the ideally reconstructed 
baseband signal. Therefore, the iterative method cannot 
eliminate additive noise in the baseband. 

3.3.     Acceleration of the iterative method 

One of disadvantages of the traditional iterative method is its 
low convergence rate, even for the optimum relaxation 
factor. The iterative and thus the hybrid method can be 
accelerated by utilizing the two previous iterations. 
Chebyshev acceleration method [11] is given by 

22111 )( 2
−−−− +−−+= + nnnnnn xxxxxx PSBA λ  n>1,

       (26) 
where x0= x̂ and x1=2/(A+B)x0.P and S are the operators as 

defined for the iterative method. The constants A and B are 
frame bounds [11], and should be selected properly for 
acceptable performance. There is no unique optimum pair of 
A and B, so they have to be selected by experimental 
methods, but for one time before running the system. 

The parameter λn can be calculated as follows 
1

14 )1(
2 −

−−= nn λλ ρ   (27) 
Where ρ is defined as  

AB

AB

+

−
=ρ                (28) 

A detailed proof of the convergence based on the 
Chebyshev polynomials is presented in [11]. The extension 
of the proof for the hybrid method is straightforward.  

The acceleration method improves the iterative method 
with little additional complexity. Notice that the parameter λn 
only depends on the constants A and B and it is sufficient to 
calculate the λ vector once and save in memory for next 
uses. 

4.      SIMULATION RESULTS AND DISCUSSION 

To have a fair comparison, initial bandlimited signals are 
produced randomly (uniform distribution), and the 
performance of each method is averaged over 50 signals. 
Signal length is set to 4096 and there are 64 samples 
representing the Nyquist rate for the discrete signal. The 
initial signals are lowpass filtered version of pseudo-random 
signals. FFT/IFFT block size is set to 128.  To show the 
significance of this method, the sampling process is 
performed at the Nyquist rate. The performance criterion for 
our simulations is the Signal to Noise Ratio (SNR) in dB. 
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SNR is calculated for interior points and 10% of the end 
points are ignored, so that the transient errors are avoided. In 
all cases the optimized relaxation factor is utilized. The 
interpolator type used in the iterations is zero-order hold, 
because of its simplicity. Other types of interpolators such as 
spline can be utilized, but they require heavy calculations. 

As illustrated in Fig. 2, the SNR increases monotonically in 
dB as the number of iterations increases. For the classical 
iterative method, after two iterations, the SNR of about 40 
dB is achieved. This means 23dB improvement with respect 
to simple filtering of sample-and-hold signal. After such 
number of iterations, the hybrid method achieves a 
performance of about 84dB in terms of SNR. On the other 
hand, the accelerated hybrid method after two iterations 
reaches 97dB and 100dB for one module and two modules, 
respectively. Hence, the accelerated hybrid method 
improvement is about 83dB for only one harmonic, this is 
quite impressive in real engineering applications. In 
comparison with the Modular method, one step of the 
conventional iterative method has approximately the same 
performance with the modular method. But the performance 
improvement of one step of the hybrid method is nearly 
twice the modular method of two modules. In comparison 
with the state-of-the-art methods such as fast B-spline, the 
fast B-spline attains the performance of about 38dB with an 
interpolator of order 15, but the accelerated hybrid method 
reaches to the SNR of 60dB after a single iteration. 

4.1.   Noisy Environment 

To study the effect of noise on the convergence rate and 
maximum achievable SNR, assume that a white Gaussian 
noise is added to each iteration step. This is a model of the 
electronic devices that generate thermal noise. Furthermore, 
a uniformly distributed noise is added to the signal at each 
iteration step as the quantization noise. 

 
Figure 2: SNR vs. the number of iterations for different methods  

Fig. 3 shows that after a few iterations, the SNR plot will 
reach its maximum value. After this maximum point, the 
SNR gets worse due to error propagation. Despite the 
degradations, Fig. 3 shows that the hybrid method is still 
more robust than the conventional method. 

4.2.     Computational Complexity 

The major advantage of the proposed hybrid method is its 
higher rate of convergence with less overall computational 
complexity. The conventional iterative method requires 
M(4Log2N+2) real additions and M(2Log2N+1) real 
multiplications per sample. Where M is the number of 
iterations and N is the FFT block size. But the accelerated 
hybrid method with one module requires M(4Log2N+4) 
additions and M(2Log2N+3) multiplications per sample. 

Although the number of computations for the hybrid case 
in each iterative step is more, but because with fewer 
numbers of iterations it achieves the same results, its overall 
computational load is considerably less. 

In comparison with the fast B-spline interpolator [3], the 
B-spline interpolator requires 3n+1 real additions and 
2[n/2]+1 real multiplications per sample value. Where n is 
the spline order. As mentioned before, in the case of B-
spline of order 15, an output SNR of about 38dB is achieved 
while the proposed method obtain the performance of about 
60dB in terms of SNR after just one iteration. The proposed 
method needs 32 additions and 17 multiplications per 
sample, but the fast B-spline method requires 46 additions 
and 15 multiplications. Thus, the proposed method 
drastically outperforms the fast B-spline method by only a 
little additional complexity.  

 
Figure 3: SNR vs. number of iterations for the different proposed 

methods in the presence of noise 
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5.     CONCLUSION 
 

We proposed a hybrid technique based on the iterative and 
the modular methods to compensate for the interpolation 
distortion such as S&H and LI. We have proven theoretically 
that this method converges much faster than the conventional 
methods. Furthermore, the robustness of this technique in 
noisy environment is shown to be better. The hybrid method 
can be improved by Chebyshev acceleration method. 
Simulation results confirm the theoretical findings. 

The proposed improved hybrid technique has improved the 
convergence rate significantly for S&H interpolation. An 
improvement of about 60dB in terms of SNR is achieved for 
the same number of iterations. The hybrid method is also 
more favorable in terms of computational complexity with 
respect to the previous iterative methods, and outperforms 
state-of-the-art interpolation methods such as B-spline. 

 
REFERENCES 
 
[1] T. H Lehmann, C. Gonner, and K. Spitzer, “Survey: 
Interpolation Methods in Medical Image Processing,” IEEE 
Trans. Med. Imag, vol. 18, no. 11, Nov 1999. 
[2]  H. S. Hou and H. C. Andrews, “Cubic splines for image 
interpolation and digital filtering,” IEEE Trans. Acoust., 
Speech, Signal Processing, vol. ASSP-26, no. 6, pp. 508–
517, 1978. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] M. Unser, A. Aldroubi, M. Eden, “Fast B-splines 
transforms for continuous image representation and 
interpolation,” IEEE Trans Pattern Anal Machine Intell, vol. 
13, no. 3, pp. 277–285, 1991. 
[4] P. E. Danielsson and M. Hammerin, “Note: High 
accuracy rotation of  images,” CVGIP: Graph. Models 
Image Processing, vol. 54, no. 4, pp.340–344, 1992. 
[5] R. R. Schultz and R. L. Stevenson, “A Bayesian 
approach to image expansion for improved definition,” IEEE 
Trans. Image Processing, vol.3, no. 3, pp. 233–242, Mar. 
1994. 
[6] S. Thurnhofer and S. Mitra, “Edge-enhanced image 
zooming,” Opt. Eng., vol. 35, no. 7, pp. 1862–1870, 1996. 
[7] F. Marvasti, “A New Method to Compensate for the 
Sample-and-Hold Distortion", IEEE Trans on ASSP, vol 
ASSP 33, No 3, June 1985. 
[8] ____ , "An iterative method to compensate for the 
interpolation distortion", IEEE Trans ASSP, vol3, no1, pp 
1617-1621,1989. 
[9] ____ , Nonuniform Sampling: Theory and Practice, 
Kluwer Academic/Plenum Publishers, 2001. 
[10] ____, M. Analoui, M. Gamshadzahi, "Recovery of 
signals from nonuniform samples using iterative methods," 
IEEE Trans. ASSP, vol 39,  Issue 4, pp 872-878, April 1991 
[11]  K. Grochenig, “Acceleration of the frame algorithm'”, 
IEEE Transactions on Signal Processing, vol. 41, pp 3331-
3340, Dec 1993. 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


