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ABSTRACT 

We introduce a new technique for the classification of motor 

imagery electroencephalogram (EEG) recordings in a Brain 

Computer Interface (BCI) task. The technique is based on an 

adaptive time-frequency analysis of EEG signals computed using 

Local Discriminant Bases (LDB) derived from Local Cosine 

Packets (LCP). Unlike prior work on adaptive time-frequency 

analysis of EEG signals, this paper uses arbitrary non-dyadic time 

segments and adaptively selects the size of the frequency bands 

used for feature extractions. In an offline step, the EEG data 

obtained from the C3/C4 electrode locations of the standard 10/20 

system is adaptively segmented in time, over a non-dyadic grid. 

This is followed by a frequency domain clustering procedure in 

each adapted time segment to maximize the discrimination power of 

the resulting time-frequency features. Then, the most discriminant 

features from the resulting arbitrarily segmented time-frequency 

plane are sorted. A Principal Component Analysis (PCA) step is 

applied to reduce the dimensionality of the feature space. The 

online step simply computes the reduced dimensionality features 

determined by the offline step and feeds them to the linear 

discriminant. The algorithm was applied to all nine subjects of the 

BCI Competition 2002.  The classification performance of the 

proposed algorithm varied between 70% and 92.6% across subjects 

using just two electrodes. The average classification accuracy was 

80.6%. For comparison, we also implemented an Adaptive 

Autoregressive model based classification procedure that achieved 

an average classification rate of 76.3% on the same subjects, and 

higher error rates than the proposed approach on each individual 

subject.  

1.  INTRODUCTION 

The use of the electrical activity of the brain for 

communication and control has gained significant interest in 

recent years. The so-called BCI is constructed by recording, 

processing and classifying the brain signals which are 

induced by mental tasks [1]. Since these tasks are executed 

without the need of any muscular act, the related activity has 

great potential as a new mechanism for handicapped people 

to interact with their environment.  

In general the electroencephalogram (EEG) is used in 

BCI systems due to its ease of recording and low cost. 

Subjects are asked to execute a mental task such as 

imagining a hand movement or solving a mathematical 

problem. Related rhythmic patterns in the EEG signals from 

the activated electrodes are then processed and classified to 

give feedback to the subject. Such movement imagery (MI) 

is used widely as a BCI strategy. In particular, event-related 

desynchronization (ERD) and synchronization (ERS) 

structures caused by MI are analyzed [1, 2]. Frequency 

bands, that show significant change in a predefined time 

window, are selected for the filtering process. It is assumed 

that the selected interval is an active segment. Previously, 

distinction sensitive learning vector quantization (DSLVQ) 

had been used as an automated approach to select relevant 

bands in fix segments [3]. However, ERS and ERD do not 

necessarily occur in a specific time interval.  Therefore the 

selection of the active segment can be a problem if fixed 

windows are used. Auto regressive (AR) modeling and 

adaptive autoregressive (AAR) modeling were then used to 

deal with the non-stationary nature of the EEG signals [4, 5]. 

Both DSLVQ and AR model based studies indicate that 

subject specific time and frequency domain features of EEG 

signal do exist.  However, neither method considers features 

from multiple time and frequency indexes.  They ignore the 

possibility that subjects may have physio-anatomical 

differences and/or different imagery strategies to induce 

ERD and ERS patterns.  In addition, there is a rich literature 

which indicates that the time and frequency characteristics of 

the alpha (7-13Hz) and beta (14-30Hz) band components can 

vary widely with beta band showing burst activity, whereas 

alpha band changes taking seconds to attenuate and recover 

[1, 2].  Recently adaptive time-frequency methods were used 

to visualize and segment movement EEG [6, 7, 8]. In these 

studies, the aim was to extract subject ERD and ERS 

structures.  

In our prior work, [7] and [8], we demonstrated the 

advantages of using adapted time-frequency bases for 

analysis and classification EEG records accompanying real 

movements. Here, we significantly enhance these approaches 

by using non-dyadic time segmentations of the underlying 

EEG signals and adaptively selecting the most discriminant 
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Figure 2 - The block diagram of the proposed approach. 

frequency band features in each time segment. In contrast 

with our earlier works which used fixed bands with the 

largest energy mean difference, here, we select the band 

sizes adaptively by estimating the distance between the 

probability distributions of expansion coefficients which are 

less sensitive to outliers. Also this latest method overcomes 

the limitation to dyadic grid of the original local discriminant 

bases (LDB) procedure. We show that the proposed 

approach is also capable of adapting physio-anatomical 

differences and subject dependent motor imagery patterns 

and resulting in a much better classifier. 

2. MATERIALS 

The dataset of BCI competition 2002, which was provided 

by Dr. Allen Osman from University of Pennsylvania, is 

used in this investigation [9]. The imagery EEG data was 

collected from 9 subjects. These subjects were asked to 

execute an imagined left and right index finger movement in 

an experimental paradigm given in figure 1. First the 

subjects are told whether the action will be explicit or 

imagined. Then a L/R cue appears on the screen indicating 

whether the movement is left or right. One second after the 

L/R cue, the letter X appears on the screen indicating it is 

time to take the required action.  EEG was recorded with 

100Hz sampling frequency from 59 electrodes placed on site 

corresponding to the International 10/20 system and 

referenced to the left mastoid.  In this study the EEG data 

from only the C3 and C4 electrodes are analyzed. These 

channels are converted to Hjort derivation in order to 

enhance the local activity [10]. The Hjort derivation Ci
H is 

calculated as 

1

4
i

H

i

j S

i jC CC s s
∈

= − ∑                                (1) 

where sCi is the reading of the center electrode Ci, with  i=3 

or 4 and Si is the index of 4 electrodes surrounding electrode 

Ci (c.f., Figure 1). Then the EEG data is bandpass filtered 

between 2-40Hz. For classification, we use all 90 trials 

available for each task. 

 

3. METHODS 

 

The proposed EEG signal classification approach 

consists of five steps (figure 2): The first four steps consist 

of off-line data preprocessing and adaptive time-frequency 

segmentation of the EEG signals. The last step is the online 

classification procedure. The offline time-frequency 

adaptation step is preceded by a spin cycle procedure to deal 

with the shift variance of the local cosine packets. It begins 

with an application of the merge/divide algorithm with local 

cosine packets to adaptively segment the EEG along the time 

axis. This is then followed by the frequency domain 

clustering procedure. Finally, principal component analysis 

is performed to reduce the dimensionality of the feature 

space. The on-line step simply computes the reduced 

dimensionality features selected by the off-line step and 

feeds them to a linear discriminant. In the remainder of this 

section, we briefly describe the various steps of the approach 

emphasizing the key off-line novel steps. 

 

3.1. Flexible Local Discriminant Bases 

 

As emphasized in the previous section the alpha and beta 

band ERD/ERS patterns have transient behavior. Therefore 

it is crucial to focus on the local properties of the EEG. The 

LDB algorithm [11] has been developed to extract such local 

information. The original LDB algorithm expands the signals 

of given classes into orthonormal bases by using wavelets or 

local trigonometric bases over a dyadic tree structure. It then 

finds the nodes of the tree where the classes are well 

separated by using a distance function maximization strategy 

[11]. Therefore the LDB algorithm is a very powerful 

method for extracting discriminant time-frequency features. 

Since the MI related ERD/ERS patterns appear as time 

locked transient phenomena, we use Local Cosine Packets to 

describe the signal.  However, subject specific EEG patterns 

will not necessarily fall in dyadic segments of the original 

LDB. Also to capture the discriminant information in the 

EEG with individual expansion coefficients is difficult. 

Therefore we developed the Flexible-LDB algorithm which 

 
(a) 

 
(b) 

 

Figure 1 - (a) The time course of the experimental paradigm. The 

analysis window is indicated at the bottom and includes the 

preparation stage as well. (b) The C3/C4 and surrounding pair of 

4 electrode locations used in this study.  
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enhances the time segmentation procedure by adopting a 

merge/divide strategy that is used in geophysical waveform 

compression [12]. Then we extract most discriminant band 

features in each time segment with a clustering procedure. 

Let us first illustrate the time adaptation algorithm with a 

schematic diagram given in Figure 3. Here the signal is 

analyzed with three smooth windows which have children 

and mother structure. In order to preserve orthogonality, 

these windows are constructed using cutoff functions r(t) 

that satisfy 
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An example of such a function r(t) is   
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Unlike the dyadic case, the children windows are not 

necessarily half the length of the mother window. In each 

segment the signal is expanded using Local Cosine Packets 

which provides local spectral representation. Then the 

distance between the expansion coefficients are compared in 

the mother and children subspaces. Whenever the total 

distance between classes in the children subspaces is greater 

than the mother subspace, the signal is divided at that point. 

Otherwise, the children segments are discarded. In the next 

iteration, the mother segment is used as the left child (M2 in 

Figure 3).  Note that the right child is the basic smallest size 

time segment used by the procedure and will have a fixed 

length. The left child can grow to be multiples of the basic 

smallest segment. This algorithm is iterated from left to right 

along the time axis by implementing the above procedure to 

achieve the desired time adaptation. 

The algorithm can be summarized as follows. 

 

Step 1. Select a basic time window (Cell) size and construct 

a children mother structure.  

Step 2. In each space expand the signal into Cosine 

Packets. For each expansion coefficient calculate 

the distance between each class and accumulate the 

distances of expansion coefficients in each 

subspace.  

Step 3. Merge the children subspaces if their discrimination 

power is less than that of the mother subspace else 

divide the signal at that point. 

Step 4. Iterate the previous step from left to right until the 

desired time adaptation is obtained. 

Step 5. Order the expansion coefficients from the 

segmented signal by using a class separability 

criterion and pick up the top  k n<<  coefficients 

for classification. 

 

There are various choices for distance measures. Assume 

,p q  represent the probability distribution of each expansion 

coefficient estimated via a histogram. We have used the 

Euclidean distance  

      ( ) ( )2 2

1

,
n

i i i i

i

D p q p q p q
=

= − = −∑   (4) 

for pruning the tree. Further, we implemented the Fisher 

class separability criterion  

 
   (a) 

 

 
(b) 

 

Figure 3 - (a) The smooth mother and children windows.  (b) A 

schematic illustration of merge/divide algorithm to locate the 

segments where the signals belonging to the classes A and B are 

well separated. Note that the rectangular segments correspond to 

smooth windows given in (a). The C1, M2 and M4 segments are 

obtained by iterating the merge/divide algorithm. Please follow 

from bottom to top to see how time adaptation is obtained.    
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for ordering the features, where µ  and σ  are the mean and 

standard deviation of the feature they belong to.  

 

3.2. Feature Extraction, Dimension Reduction and 

Classification 

The original LDB algorithm produces a feature space with 

high dimensionality. A feature space of high dimension can 

decrease the generalization capability of the classifier when 

there is a limited number of training samples available [13]. 

Also during our studies we observed that the center 

frequency of the oscillations differ from sweep to sweep. 

This increases uncertainty along the frequency axis. 

Therefore, in our previous studies we merged the expansion 

coefficients in 4Hz frequency bins. Here we enhance the 

frequency adaptation within each time segment. Specifically,  

we merge coefficients that are adjacent in the frequency 

domain only if their union has larger discrimination power 

than the individual coefficients. Note that this is basically a 

coefficient clustering approach obtained via cost function 

maximization and results in an adaptive frequency band 

adaptation for discrimination.  

 The Flexible-LDB which is obtained by combining of 

adaptive time segmentation and frequency axis clustering 

approach results in an arbitrary segmented t-f plane, which 

has interesting connections to [14]. However, in [14] the 

authors used a double tree approach which was also limited 

to a dyadic grid. Here we have overcome this limitation.  

Note also that Cosine Packet representations are not shift 

invariant. To get around this problem we implement the 

“spin cycle” procedure of [11]. The procedure expands the 

training set by generating its time shifted versions in both 

directions in a circular manner.  If the desired number of 

shifts is τ then the training set is expanded to 2 1τ +  

including the original signal and its shifts by , 1, ...,τ τ τ− − + . 

We use linear discriminant analysis (LDA) as a classifier. 

However the F criterion does not take into account the 

correlations between ordered features. Therefore prior to 

feeding the features to the LDA procedure, we apply 

principal component analysis (PCA) on the top sorted 

features. The PCA procedure removes the correlation 

between features and reduces the dimensionality of the 

feature space. Then we sort the projected feature set 

according to corresponding eigenvalues in the descending 

order. Finally we supply this PCA re-ordered feature set to 

LDA.  

4.  RESULTS 

To assess the efficiency of the proposed algorithm we 

compared its performance with that of the standard reference 

AAR model based approach for feature extraction. The AAR 

approach is widely used in BCI research due to its efficiency 

and ease of applicability. An AAR model is described as 

follows 

 

1, ,
[ ] [ 1] .. [ ]

n p n
y n a y n a y n p x= − + + − +    (6) 

 

 where y is the output sequence, p is the model order, am,n are 

the time varying model parameters and x is white noise with 

a zero mean and variance σ2.  We selected 6p =  and 

calculated the model parameters for every sample using the 

least mean square approach for C3 and C4 electrodes. Note 

that with p=6, the model represents 3 peaks in the signal 

spectrum. Hence, our parameter choices resulted in a feature 

vector of dimension 12 which is commonly preferred in BCI 

studies.  

To compare AAR, Dyadic and Flexible LDB algorithms, 

we selected an analysis window of 416 samples and a tree 

depth of 4. The cell size for the merge/divide approach is 

chosen to be equal to the deepest segment, which is 260ms. 

For the PCA procedure, we typically select k in the range of 

32 to 48 because most of the discrimination power is 

concentrated in these coefficients. We have used 10 times 10 

fold cross validation to estimate the classification accuracy. 

Table 1 shows the classification accuracy for all 9 subjects. 

The Flexible-LDB algorithm outperformed other 

methods. One way paired t-test indicates that the 

classification accuracy of the introduced method is 

significantly better than Dyadic-LDB and AAR methods 

(p<0.0012, p<0.0022). We observed that the algorithm 

constructed different time-frequency tiling for different 

subjects. We visualize selected time-frequency features for a 

representative subject in figure 4. Further, for a given 

subject, the two hemispheres are represented by distinct 

segmentations and features. Also the total discrimination 

power of the features obtained from C3/C4 electrodes was 

different. Therefore our results support a hemispheric 

asymmetry behavior. We noticed that the minimal 

classification error is obtained after combining several 

features. This indicates that the interactions between 

 
TABLE 1   

The classification accuracy (%) of Dyadic, Flexible LDB and 

AAR methods 
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different cortical regions and time frequency locations are 

important for discrimination. Currently we are investigating 

an approach which can construct the t-f tiling by accounting 

the interactions between features. A recently introduced t-f 

approach in [15] has achieved 80% by using a simultaneous 

analysis of 20 electrodes on the same data set. Our algorithm 

is capable of achieving similar (or slightly better) 

performance just by using 2 electrodes. Its efficiency of 

constructing arbitrary tiling for each subject and weighting 

space/electrode locations can be a reason for this. Also being 

able to capture same error rates with minimal number of 

electrodes makes the algorithm computational efficient. 

Obtained classification accuracy and capability of adapting 

to inter-subject variability and physio-anatomical differences 

make the proposed algorithm a promising candidate for 

future BCI systems. 
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Subject – S2 

 
(a) 

 

 
(b) 

 

Figure 4 - The time-frequency features of a representative 

subject obtained from (a) C3 and  (b) C4 electrode locations. 

The darker locations have the more discrimination power. Note 

the differences between tilings, feature characteristics and their 

discrimination power of each electrode location. 
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