
TOWARDS MULTIPLE-ORIENTATION BASED TENSOR INVARIANTS
FOR OBJECT TRACKING

Nicolaj C. Stache, Thomas H. Stehle, Matthias Mühlich, and Til Aach
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ABSTRACT
We derive a new scale- and rotation-invariant feature for
characterizing local neighbourhoods in images, which is ap-
plicable in tasks such as tracking. Our approach is moti-
vated by the estimation of optical flow. Its least-squares esti-
mate requires the inversion of a symmetric and positive semi-
definite 2× 2-tensor, which is computed from spatial image
derivatives. Only if one eigenvalue of the tensor vanishes,
this tensor describes the local neighbourhood in terms of ori-
entation. Estimating optical flow, however, requires that this
tensor be regular, i.e., that both its eigenvalues do not vanish.
This indicates that the local region contains more than one
orientation.

Double-orientation neighbourhoods (like X junctions or
corners) are especially suited for tracking or optical flow
estimation, but the two underlying orientations cannot be
extracted from the standard structure tensor. Therefore,
we extend this tensor such that it can characterize double-
orientation neighbourhoods. From this extended tensor, we
derive a rotation- and scale-invariant feature which describes
the orientation structure of the local regions, and analyze its
performance.

1. INTRODUCTION

In this paper, we derive a rotation- and scale-invariant feature
for the description of local image neighbourhoods, which
may be applied in tasks such as object tracking. The feature
is based on the analysis of the orientation structure of the
image signal in local regions by tensors, which are formed
from spatial derivatives. Though thus aimed at motion analy-
sis by feature matching rather than differential estimation of
motion, let us motivate our approach by the differential es-
timation of optical flow. Let f (x,t), with f : R

3 → R, de-

note a grey-level image sequence, where x = (x,y)T ∈ R
2

is the spatial coordinate vector, and t ∈ R is time (addition-
ally, we assume that f is differentiable). The fundamen-
tal constraint for estimating the optical flow field w(x,t) =
(wx(x,t),wy(x,t)), w : R

3 → R
2, is formed by setting the

total temporal derivative of f to zero [6, 8, 14]:

d

dt
f (x,t) = (∇ f )T ·w+ ft = 0 . (1)

Here, ∇ f = ( fx, fy) is the spatial gradient of the image signal,
while fx, fy and ft are the partial derivatives of f (x,t) with
respect to x, y and t. Practically, the flow field is assumed
to be constant within a small spatial region Ω ⊂ R

2. The
least-squares solution for w(x,t) ∀x ∈ Ω then obeys

Jw = b ⇒w = J
−1

b , (2)

where b is a twodimensional vector calculated from the par-
tial image derivatives. The tensor J is a symmetric and posi-
tive semi-definite 2×2-matrix, which is calculated from the
spatial image gradient by

J =

∫

Ω
(∇ f )(∇ f )T dΩ =

∫

Ω

[

f 2
x fx fy

fx fy f 2
y

]

dΩ . (3)

Inversion of J is possible if it is regular, i.e. if both its eigen-
values do not vanish. This condition can also be interpreted
as follows: the image signal within Ω must not be character-
ized by a single orientation – the matrix J is the very same
entity which is also known as structure tensor, and which
can be used to estimate the local spatial orientation as the
eigenvector of J corresponding to the smallest (ideally: zero)
eigenvalue [3, 7, 2].

If one eigenvalue is close to zero, the signal is oriented
and we can determine this orientation – but a unique optical
flow estimation is prevented by the aperture problem. On
the other hand, if no eigenvalues are close to zero, we can
estimate optical flow, but the corresponding eigenvectors do
not represent orientations, e.g. if the signal is a superposition
of two (single-)oriented signals.

We therefore describe an appropriately extended tensor
which can capture two orientations of, e.g., a corner. The
eigensystem analysis of this tensor, however, does not di-
rectly yield the sought orientations, rather, it provides a so-
called mixed-orientation parameter (MOP) vector, which im-
plicitly encodes both sought orientations, and is thus not ro-
tation invariant. Instead of decomposing the MOP vector
into the sought orientations, we discuss here how to derive
a feature from it which unambiguously characterizes the lo-
cal orientation structure, and is invariant to rotation as well as
to certain scalings of the coordinate axes and intensity. Most
of our discussion will, for ease of notation, be developed for
bivariate image data. We will also, however, show how to
extend the framework towards higher-variate data, such as
tomograms.

2. DOUBLE ORIENTATIONS

2.1 Bivariate Images

Let us now consider a bivariate image f (x), with f : R
2 →R,

to be additively composed within a local region Ω from two
oriented subimages by [12, 13, 1]

f (x) = f1(x)+ f2(x), f1(x), f2(x) : R
2 → R . (4)

Subimage f1(x) is oriented along θ with the orientation vec-

tor u = (cosθ , sinθ )T = (ux,uy)
T , while f2(x) is oriented
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along γ with the orientation vector v = (cosγ, sin γ)T =
(vx,vy)

T . Therefore, f1(x) and f2(x) obey

α(θ ) f1(x) = u
T ·∇ f1(x) = 0 ∀x ∈ Ω (5)

α(γ) f2(x) = v
T ·∇ f2(x) = 0 ∀x ∈ Ω (6)

where α(θ ) denotes the directional derivative operator along
θ . Alternatively, we consider the superposition of subim-
ages which occlude each other [10]. In some part Ω1 ⊂ Ω,
we have f (x) = f1(x), while in its complement Ω2, f (x) =
f2(x). Our model then is

f (x) =

{

f1(x) ∀x ∈ Ω1

f2(x) ∀x ∈ Ω2
(7)

with
∂ f1(x)

∂u
= 0 ∀x∈Ω1,

∂ f2(x)
∂v

= 0 ∀x∈Ω2 and Ω1∪Ω2 =
Ω, Ω1 ∩Ω2 = /0. In both cases, applying the operators α(θ )
and α(γ) sequentially to the composite image f (x) yields the
constraint

α(θ )α(γ) f (x) =
∂ 2 f (x)

∂u∂v
= 0 ∀x ∈ Ω . (8)

(We neglect here that, in the occluding case, this constraint
may be violated on the border ∂Ω12 between the subregions
Ω1 and Ω2). We rewrite this constraint as the inner product

a
T
d f (x) = 0 ∀x ∈ Ω (9)

where the three-dimensional vector a is given by

a
T = (uxvx, uxvy + uyvx, uyvy)

= (cosθ cosγ, sin(θ + γ), sinθ sinγ) = (a, b, c) (10)

and

d f (x) = ( fxx, fxy, fyy)
T . (11)

The components of a are the so-called mixed orientation pa-
rameters (MOP) resulting from the concatenation of two di-
rectional derivatives. The least-squares solution for the MOP
vector a then minimizes

Q(a) =
∫

Ω
[aT

d f ]2dΩ = a
T
Ta = 0, a

T
a > 0 (12)

where T is the 3×3-tensor

T =

∫

Ω
(d f )(d f )T dΩ

=

∫

Ω





f 2
xx fxx fxy fxx fyy

fxx fxy f 2
xy fxy fyy

fxx fyy fxy fyy f 2
yy



dΩ . (13)

Minimizing Q(a) subject to a
T
a > 0 implies that a is the

eigenvector of the T corresponding to its smallest eigenvalue
λ3:

Ta = λ3a, a
T
a = 1 . (14)

The eigensystem analysis determines only the direction of
a. Setting a

T
a = 1 as done above implies that the estimate

is only known up to an unknown scaling factor R. In ideal

double orientation neighbourhoods in the sense of Eqs. (4)
or (7), the lowest eigenvalue λ3 vanishes, i.e. rank(T) = 2.

The MOP vector implicitly encodes the orientation vec-
tors u and v. Methods to decompose a into u and v are de-
scribed in [12, 13, 1, 9]. Here, we seek to extract a rotation-
invariant feature from a without decomposing it first. To-
wards this end, we consider its degrees of freedom (DoF):
As discussed above, a obeys the homogeneous equation
Ta = λ3a = 0, and can only be determined up to scale and
sign. The MOP vector therefore is an element of a projec-
tive space, where two vectors are equivalent when they differ
only in norm and sign [5]. We may therefore constrain a to
length one, doing so reduces its DoF from three to two. This
number is equal to the number of parameters, viz. θ and γ ,
specifying two orientations in an image. Deriving the rota-
tion invariant feature from a implies the loss of one DoF. Our
feature therefore will only exhibit one DoF, i.e., it is scalar.
Intuitively, the sought feature is then given by the difference

angle β between the orientations,1 or by functions of β , such
as |cosβ |. From the MOP vector entries a,b,c defined in
Eq. (10), the latter can be directly computed according to

|cosβ | =
|a + c|

√

(a− c)2 + b2
. (15)

Note that this result remains unchanged when scaling a.
In the following, we generalize this approach to tri- and

higher-variate input data, and prove that indeed all scalar in-
variants of f (x) encoded in the MOP vector a are generated
by the angle β .

2.2 Tri- and Higher-Variate Data

Let f (x), x = (x1,x2, . . . ,xp)
T , f : R

p → R now denote a p-
variate mapping. Within the local region Ω ⊂ R

p, let f (x)
consist of the additive or occluding superposition of two p-
variate signals f1(x) and f2(x), each of which be oriented
along a line. Hence,

∂

∂u
f1(x) =

∂

∂v
f2(x) = 0 . (16)

Constraint (8) then expands to

∂ 2 f (x)

∂u∂v
=

(

p

∑
i=1

ui
∂

∂i

·
p

∑
j=1

v j
∂

∂ j

)

f (x)

=
p

∑
i=1

i

∑
j=1

ai j fi j = 0 (17)

where fi j is the partial derivative of f with respect to xi and
x j, while ui, v j, i, j = 1, . . . , p are the components of u and
v. The MOPs ai j are given by

ai j =

{

u jv j for i = j
uiv j + u jvi else

. (18)

Gathering the ai j into the MOP vector a = [ai j]
T
j≤i and with

the vector d f = [ fi j ]
T
j≤i of second derivatives, we obtain from

1 More precisely, it is the pair (β ,180◦−β). Note that both angles share
the same absolute value of the cosine; a negative sign correponds to an an-
gle greater than 90◦, while cosβ ≥ 0 means β ≤ 90◦. Therefore, restrict-
ing cosβ to non-negative values by taking the absolute value automatically
chooses the smaller angle of the pair (β ,180◦ −β).
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Eq. (17)

a
T
d f (x) = 0 ∀x ∈ Ω (19)

which is structurally similar to Eq. (9). The sum in Eq. (17)
consists of k = p(p+1)/2 components. With the symmetric
k× k-tensor

T =

∫

Ω
(d f )(d f )T dΩ (20)

the MOP vector a satisfies a
T
Ta = 0 , a

T
a = 1. As above,

a is a homogeneous vector, we thus may set aT
a = 1.

Let us now consider another tensor A which is formed
from the (as yet unknown) orientation vectors by A =
1
2
(uv

T +vu
T ). The rank of A is two, thus, A has two non-

vanishing eigenvalues λ+ and λ−. These eigenvalues are eas-
ily derived to

λ+ =
1

2
[1 +u

T
v] = cos2 β

2
> 0 (21)

λ− =
1

2
[uT

v−1] = −sin2 β

2
< 0 , (22)

where we have used that the inner product of the unit orienta-
tion vectors u and v yields the cosine of the difference angle
β , i.e. uT

v = cosβ . Therefore,

λ+ + λ− = cosβ (23)

λ+−λ− = 1 . (24)

With Eq. (18), this tensor can also be computed from the

MOPs by setting [A] j j = a j j, and [A]i j = 1
2
ai j, i 6= j. We are

now able to state which scalar invariant features of f (x) are
encoded in the MOP vector a: The rotation of the content of
the image f (x) in Ω causes a rotation of the vectors u and
v. This can be described as a multiplication with the rotation
matrix M

û = M ·u, v̂ = M ·v (25)

and yields a rotated tensor

Â =
1

2

(

Mu · (Mv)T +Mv · (Mu)T
)

= M
1

2

(

uv
T +vu

T
)

M
T = MAM

T . (26)

Since rotation is an orthogonal similarity transform, the

eigenvalues of Â are identical to those of A. All scalar in-
variants under local orthogonal similarity transforms are thus
generated by λ+ and λ− or, from Eq. (23), by the angle β be-
tween the orientations.

The algorithm for calculating the feature |cosβ | is there-
fore as follows:

• Calculate T from the second-order image derivatives
over Ω.

• Estimate the MOP vector as the eigenvector belonging to
the lowest eigenvalue λ3 of T.

• Form the tensor A from the entries of a.

• Calculate the non-zero eigenvalues λ+ > 0 and λ− < 0
of A, and confirm that all other eigenvalues, if any, are
(close to) zero.

• Calculate cosβ from the eigenvalues: Since the vector a

and hence the tensor A are only known up to a scaling
factor R, Eqn. (23) and (24) change to λ+ +λ− = Rcosβ
and λ+−λ− = R, yielding for cosβ

cosβ =
λ+ + λ−

λ+−λ−
. (27)

As both numerator and denominator are positive, the same
holds for cosβ and it follows β ≤ 90◦ (see also footnote 1;
the identification of a “positive” and a “negative” eigenvalue
here is equivalent to taking the absolute value in Eq. (15))

2.3 Scaling Invariances

We now briefly discuss invariances of the rotation-invariant
measure |cosβ | as calculated from Eq. (27) with respect
to intensity scaling and scaling of the coordinate axes. Let

f̂ = cg f + co, cg,co ∈ R, cg 6= 0, denote the intensity-scaled
version of f . In the tensor T, this results in a multiplication
of each entry by c2

g. The eigenvector a, though, remains un-

changed, and so does, consequently, |cosβ |. Similarly, scal-
ing each component xi, i = 1, . . . , p, of the space vector x by

the same factor cs ∈ R, cs 6= 0, yields f̂ (x) = f (cs ·x). Each

entry of T is then multiplied by the same factor c4
s , again

leaving the MOP vector a unchanged.

3. RESULTS

To evaluate the invariance properties of our feature, we gen-
erated various synthetic image sequences with known ground
truths. Fig. 1 shows four subimages with additively superim-
posed orientations in noise, which were rotated from frame
to frame by 5°. Fig. 2 shows |cosβ | as calculated according

#1 #2 #3 #4

90° 67.5° 45° 22.5°β

cos( )β 0 0.3827 0.7071 0.9239

Fig. 1: First frame of a sequence showing four subimages
(71× 71 pixel each) with additively superimposed oriented
patterns in white Gaussian noise (PSNR 28dB), where β
varies from 90° to 22.5°. The structure in each subimage
was rotated from one frame to the next by 5°.

to Eq. (27) vs. rotation angle for each subimage. The rotation
covered in total 175°, corresponding to 35 frames. The cal-
culation was based on a local region Ω of size 27×27 pixel
placed in the image centre. For each curve, Fig. 2 also pro-
vides standard deviation and mean of our feature as estimated
over all frames. Despite the presence of noise, the estimation
error corresponds to less than 0.5°. Clearly, the sensitivity of
our feature to rotation is very low, as expected.

Fig. 3 depicts occluding superpositions of similar pat-
terns. Again, the feature calculation was performed within a
local region of size 27×27 pixel placed in the image centre,
thus always containing the occluding boundary. The plots of
our feature over rotation angle are very similar to those in
Fig. 2, we therefore only give standard deviations, mean val-
ues and mean difference to each true value in Tab. 1. Again,
the observed sensitivity to both rotation and noise is very low.
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#4: = 0.0032, = 0.9187, = -0.0052σ µ ∆µ

#1: = 0.0020, = 0.0023, = 0.0023σ µ ∆µ

#2: = 0.0068, = 0.3801, = -0.0026σ µ ∆µ

#3: = 0.0066, = 0.7018, = -0.0053σ µ ∆µ

Fig. 2: Invariance feature |cosβ | over frame number for the
patterns in Fig. 1. Also given are the standard deviation σ
and the mean µ , and the difference between µ and the true
value of |cosβ |.

#1 #2 #3 #4

90° 67.5° 45° 22.5°β

cos( )β 0 0.3827 0.7071 0.9239

Fig. 3: Occluding patterns in noise, PSNR 28 dB.

no. σ µ ∆µ
#1 0.0136 0.0154 0.0154
#2 0.0203 0.4027 0.0200
#3 0.0087 0.7197 0.0126
#4 0.0046 0.8799 -0.0440

Tab. 1: Results for the occluding patterns in Fig. 3.

#1 #2 #3 #4

T, Y

X

90° 67.5° 45° 22.5°β

cos( )β 0 0.3827 0.7071 0.9239

Fig. 4: T, Y and X junctions in noise, PSNR 28 dB.

Fig. 4 shows several junctions exhibiting double orientations
in noise. As above, the feature calculation was carried out
in a region of 27× 27 pixel centred around each junction.
The results of the feature values over rotation angle are given
in Fig. 5, and the corresponding estimates of standard de-
viations, mean values and mean differences are provided in
Tab. 2. The results show that such junctions pose a greater
challenge than the textures above - probably because the ac-
tual orientation information covers only a minor part of the
analysis region Ω. This holds in particular for the Y junc-
tion with the lowest angle β (junction #4 in the upper row of
Fig. 4).

0 25 50 75 100 125 150
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rotation angle [degree]

c
o

s
in

e
 o

f 
d

if
fe

re
n

c
e

 a
n

g
le

#1
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T, Y
X

Fig. 5: Results for the rotating junctions in Fig. 4.

no. σ µ ∆µ
T #1 0.0143 0.0104 0.0104
Y #2 0.0271 0.3651 -0.0176
Y #3 0.0354 0.6687 -0.0384
Y #4 0.0496 0.8549 -0.0690
X #1 0.0024 0.0030 0.0030
X #2 0.0215 0.3700 -0.0127
X #3 0.0325 0.6829 -0.0242
X #4 0.0273 0.8799 -0.0440

Tab. 2: Standard deviations and mean values computed from
the curves in Fig. 5.

To evaluate the influence of the remaining fluctuations of the
feature value over rotation, let us assume that each of the T
and Y junctions in Fig. 4 shall be tracked by matching the
features measured in a reference frame to those measured in
its predecessor. The reliability of this matching process can
be assessed by describing the feature fluctuations for each
junction by a Gaussian distribution with mean and standard
deviation as in Tab. 2. Fig. 6 shows these distributions to-
gether with the decision thresholds for optimal separation in
the sense of minimum confusion error (equal a priori proba-
bilities for the occurrence of each junction are assumed). As
one would expect from Fig. 5, the overlap is largest between
the distributions belonging to junctions #3 and #4. Still, the
probability of an erroneous match is only 0.70%. Simply
assigning each observed feature to the reference class with
nearest mean would lead to an error of 0.86%.
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Fig. 6: Estimates of probability density functions for T and
Y junctions from the parameters in Tab. 2.
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4. CONCLUSION

We have derived a new invariant feature for the description of
double oriented local image neighbourhoods. The derivation
was partly motivated by what is known as the aperture prob-
lem in the estimation of optical flow: the matrix involved in
estimating optical flow describes an important local feature,
viz. orientation, but only if it is singular - in which case it
cannot be used to estimate optical flow. Vice versa, if regu-
lar, the matrix permits estimation of optical flow, but it is not
able to capture a local feature such as orientation any more.
To characterize the underlying local image signal in this case,
we have developed two superposition models assuming ad-
ditively or occludingly superimposed and individually ori-
ented subsignals. Based on these models, an extended tensor
was discussed which is able to reflect the double orientation
property. The eigenvector belonging the lowest eigenvalue
of this extended tensor is the so-called MOP vector, which
encodes the orientations of both subsignals. In bivariate im-
ages, the MOP vector has three components but, as a unit
vector, it possesses only two DoF. Since invariance to rota-
tion involves the loss of another DoF, the sought feature must
be a scalar, and was intuitively found as the difference angle
β between the orientations or a function of it, such as |cosβ |.
We have shown how to calculate this feature directly from the
MOP vector, without explicitly determining the orientations.
We also extended the approach to tri- and higher-variate data,
and provided a proof that indeed all scalar invariants encoded
in the MOP vector are produced by β . In all cases, we have
used the absolute value of cosβ as feature, which could be
directly calculated from the MOP vector components. We
intentionally abstained from calculating β itself by invert-
ing the cosine, since this involves a transcendental function
the nonlinearities of which would amplify the error noise of
the estimate. In addition, it could also be shown straight-
forwardly that the feature is invariant with respect to linear
intensity scalings and the scale of the local image region.

Our experiments conducted so far with this feature con-
firmed the expected invariant behaviour of the feature, where
we focussed on rotation of both double-oriented textured pat-
terns and junctions. Though the results are quite promis-
ing, the development of this feature is not yet complete, and
considerable research efforts remain to be carried out: first,
our derivations are all based on a spatially continuous image
model. In our spatially discrete implementations, we used
standard filters, such as finite-difference approximations for
the differentiation, which were not optimized in any way for
the task at hand. The benefit of using optimized filters, such
as the ones in [4, 11], remains to be investigated, as does
the comparison to other rotation- and scale invariant features,
such as the SIFT [15]. Another open point is the effects
of sampling on the invariance with respect to scale of the
neighbourhood since, as the size of local structure becomes
smaller, calculation of, e.g., the derivatives will become more
inaccurate. Finally, let us mention that the extension of the
proposed approach to multispectral data, such as colour im-
ages, is straightforward: similarly as done for the single ori-
entation tensor in [3], it suffices to calculate the extended ten-
sor according to Eq. (20) on each spectral component, and to
replace T by the sum of these.
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