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ABSTRACT

This article presents an algorithm for multiple orien-
tation estimation at junctions which can be used as a
first step towards a complete description of the junction
structure. The algorithm uses the structure tensor ap-
proach to determine the orientations of the edges or lines
that meet at a junction and then extracts the principal
orientations from a histogram of the orientation angles
in a circular region around the junction. In contrast
to previous solutions it uses only first-order derivatives
and is suited for junctions with an arbitrary number of
orientations without increasing the runtime.

1. INTRODUCTION

In many image processing applications, the localization
and description of junctions is an important subtask.
Junctions are intrinsically two-dimensional image fea-
tures [9] which means that they provide most of the in-
formation contained in an image while features of intrin-
sic dimension one (edges or lines) and zero (flat regions)
appear more frequently but are redundant. In practice it
is important that intrinsically two-dimensional features
are the only ones that do not suffer from the aperture
problem and can be recognized within a small window.
This property makes them suitable for matching prob-
lems where corresponding points are to be identified in
a number of images which is an essential task in motion
estimation, object tracking, stereo vision, registration,
and object recognition.

Junctions are image regions where several oriented
structures like edges or lines meet. After a junction has
been detected, an important step towards a complete
description of its structure is to determine the orienta-
tions of the edges and lines. This constitutes a prob-
lem of multiple orientation estimation. Solutions to this
problem can be based on well-known algorithms that
determine single orientations as they appear at edges
or in simple oriented patterns. In the next section, the
concept of orientation will be introduced formally and
a widely used approach for single orientation estimation
using the so called structure tensor will be reviewed.

2. SINGLE ORIENTATION ESTIMATION

An image is called ideally oriented if there is an orienta-
tion along which the intensities do not change within a
small region. This is rarely the case in practice, but it is
still possible to determine the orientation with the least
intensity variation which can be a meaningful measure
for describing image structures like edges or lines and
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for detecting their intersection points which appear as
corners and junctions in the image. Orientations have
to be distinguished from directions: While the latter are
given in the range |—180°,180°], the former only have a
range of |[—90°,90°] and thus a periodicity of 180°.

A formal definition of the notion of orientation can
only be given for continuous image functions. An image
I : R? — R is ideally oriented in a region Q C R? if

there is a unit vector v = (cos#,sin#)7 satisfying
Ix)=I(x+kv) VxeQkeR st.x+kvel
This is equivalent to
0I(x)
=0 Vv Q 1
Iy X € (1)

where the left hand term denotes the directional deriva-
tive of I along v which can also be written as v’ VI(x).

If there is no ideal orientation a minimization prob-
lem can be derived from (1)

[ (29’ ox i

This can be rewritten as

/ (vl VI(x))? dx = / vIVI(x) (VI(x)T v dx
Q Q

= VT/ VI(x) (VI(x))T dx v = vI'Tv — min
Q

where the matrix

I3 (x)

T= /Q ( L(x)1,(x)

is called the structure tensor. Including the constraint
that v is a unit vector via a Lagrange multiplicator

Lo(x) 1, (x)

vITv + A1 = v'v) — min

and setting the derivative of this term to zero results in
Tv = Av which means that v is the eigenvector of T
that corresponds to its lower eigenvalue.

The eigenvalues of T give an indication of how close
the image structure is to an ideal orientation. If both
eigenvalues are zero, there is no variation at all and the
image has constant intensities in 2. Neglecting small
variations induced by noise, this is often true for back-
ground regions or surfaces. On the other hand, both
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eigenvalues are large if ) has more than one orienta-
tion as at junctions or if there is no structure at all.
One small and one large eigenvalue give evidence of an
oriented structure and thus high confidence in the com-
puted orientation.

When orientations of an image are analysed, the re-
gion () is often a small square window that is moved
across the image and centred at each pixel in turn. This
results in an orientation map for the image where each
pixel is assigned an orientation and a measure of confi-
dence based on the eigenvalues which can also be used
to identify edge and junction pixels.

The estimation of a single orientation using the
structure tensor has been known for 20 years after hav-
ing been published almost simultaneously by Di Zenzo
[4], Bigiin and Granlund [2] and by Kass and Witkin
[7]. Since then, however, not many efforts have been
made to generalize the results in order to estimate mul-
tiple orientations as they occur at junctions. The ideas
presented so far are summarized in the next section.

3. MULTIPLE ORIENTATION
ESTIMATION

3.1 Superposition of Orientations

Iso and Shizawa [6] were the first to address the prob-
lem of multiple orientation estimation. The same con-
cept they used for L-, T- and X-junctions was picked up
again by Aach et al. [1] who applied it to superimposed
oriented patterns. The underlying models assumes the
image I to be the sum of two ideally oriented images
I, and I, with orientation vectors v; = (cosfy,sinf;)”
and vy = (cosfy,sin )T such that

8[1 (X) _ 812 (X)

= Q
v, vy 0 Vxe
which is equivalent to
0?1 (x)
— = Q .
Ovi0vs 0 Vxe (3)

In analogy to the single orientation case a minimization
problem can be formulated

A(gﬁi)zX*mm (4)

This can be transformed into an eigenvalue problem
with the tensor

I (%)
o= [ 100 ) (L. Ly 0.1,y () dx
@\ Iy (%)

and eigenvectors of the form
(cos b1 cos Ba,sin(0; + 62),sin 7 sin QQ)T.

These are called mixed orientation vectors and consti-
tute a unique but implicit representation of the two ori-
entation angles. In [6] and [1] different ways are shown
how to calculate the angles from the vectors. In princi-
ple, this procedure also works for more than two orienta-
tions, resulting in larger tensors featuring higher-order

derivatives, but in this case no efficient method is known
yet for decomposing the mixed orientation vectors. Be-
sides, the algorithm is not able to determine the number
of orientations by itself, other than by trying tensors of
different size until some confidence criterion based on
the eigenvalues is satisfied.

3.2 Vicinity of Orientations

A different model for multiple orientations was proposed
by Mota et al. in [8]. In contrast to the superposition
approach, it is based on two image regions with differ-
ent orientations adjoining each other. The region 2 is
divided into a subregion P with an orientation vector
v and another subregion with vo. This implies that

OIX) _ o wxep
6v1 ’
oI(x)

Ivs =0 VYxeQ\P

and thus, as an alternative to (3)

oI(x) 9I(x)
avl 8V2

=0 Vxe.

Again this can be turned into a minimization problem

(5252

which leads to a tensor

I3 (x)

“:A u@@@

(L (%), L(x) Iy(x), Ij(x)) dx

and mixed orientation vectors of the same kind as above.
Concerning the generalization to more than two orienta-
tions the same holds as for the superposition model. In
[8] this method is applied to adjoining oriented patterns
and to L- and T-junctions.

4. HISTOGRAM-BASED ORIENTATION
ANALYSIS

Junctions are intersection points of several oriented
structures like edges or lines. The models of the two
methods described above, however, assume the presence
of oriented patterns throughout the region Q which is
usually not the case at junctions. The methods often
deliver satisfactory results, but they still have the dis-
advantage of not being able to determine the number
of orientations at the junction. Instead, the algorithm
has to be given this number as an input. Consequently,
an iterative procedure is necessary where the number
of orientations is increased until a confidence measure
reaches a given threshold value. For Y-junctions which
appear frequently in images, three different structure
tensors are evaluated because models for one and two
orientations are tested first. This increases the runtime
of the algorithm considerably, the more so as the ten-
sors become larger during the iteration up to 4 x 4 for
three orientations. Moreover, when the superposition
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Figure 1: Illustration of the principle of histogram-based
orientation analysis. 1 Original image. 2 A\; profile. 3
Ao profile. 4 Orientation vectors for pixels with A; < 10
and Ao > 50. 5 Histogram of the orientations within a
circular window of radius 9 around the junction centre.
6 Output of the mean shift algorithm for this histogram.

model is used, the structure tensor employs derivatives
of increasing order which causes a stronger sensitivity
to noise. Finally, the confidence criteria have to be cho-
sen carefully. If two orientations are detected where
actually three are present, one cannot assume that the
detected two orientations are correct because the un-
derlying model is not suitable for the situation at hand.
This generally leads to unusable results.

In the following an algorithm is introduced that is
based on an adequate model for junctions and that de-
termines the number of orientations by itself without us-
ing an expensive “try and error” procedure. Basically,
instead of using a pixel in the centre of the junction
as the starting point for determining the orientations
of the edges originating from it, it considers the pixels
on the edges themselves. For these pixels the orienta-
tions can be calculated using the simple structure tensor
(2). Edge points are easily recognized by the eigenval-
ues of this tensor; they fulfill the conditions A < #;
and Ay > to for thresholds that can either be fixed or
determined locally by means of a histogram, applying
the observation that most of the pixels lie in flat ar-
eas and have very small values for A1 as well as for As.
In practical experiments with 8-bit gray-value images,
good results were obtained with ¢; = 10 and t, = 50.

Figures 1.2 and 1.3 show the profiles of the two eigen-
values for an example image with a Y-junction. The
junction and edge pixels are clearly distinguishable by
A1 and Ao, respectively.

In figure 1.4 the orientations computed with the sim-
ple structure tensor are plotted for those pixels that have
been identified as edge points. In order to get the de-
sired information about the multiple orientation at the
junction, it suffices to “collect” the single orientations
in a neighbourhood of the central junction pixel. This
can be achieved by calculating a histogram of the orien-
tation angles and estimating the principal orientations
from it. A suitable bin size is 1°; a finer partition is not
reasonable as the usual accuracy of the computed angles
is not better than 5°. Figure 1.5 shows the orientation
histogram for the example image.

In the ideal case, each histogram peak corresponds
to an orientation that is present in the neighbourhood
of the junction. Sometimes it suffices just to find lo-
cal maxima in the histogram that exceed a particular
threshold. This can, however, lead to misinterpreta-
tions: The histogram in figure 1.5 conveys the impres-
sion that the orientation —89° appears less frequently
than the two other ones. But this does not take into ac-
count that there is a certain variation in the histogram
due to the inaccuracy of the calculated orientations.
This can be compensated for by using the mean shift al-
gorithm to group angles in the histogram that are likely
to represent the same orientation in the image.

The mean shift algorithm was mentioned for the first
time by Fukunaga and Hostetler [5] as a method for es-
timating the modes of an unknown probability distribu-
tion. Its relevance for image processing was pointed out
e. g. by Comaniciu and Meer [3]. Here only the intu-
itive one-dimensional version of the algorithm is used.
Given the histogram H () for § = —89°,...,90°, the
iteration

oo g Tica-nll0)
0o—=Y, i+1 — 0,+h

is performed for each 6 until a fixed point is reached.
The sums are over all integers between the given limits.
This procedure can be thought of as shifting 6 to the
centre of gravity of its local neighbourhood of radius h in
each iteration step. The iteration converges when a local
maximum is reached. The choice of h does not seem to
play an important role; in practical experiments good
results were obtained with h = 7. On the average, two
iterations were sufficient, so the complexity is moderate.

Compared to a direct maximum search this method
has the advantage that the result is not necessarily an
integer and that all occurring angles are mapped to a
maximum (the one their iteration converged to) which
yields the desired grouping. This procedure is a one-
dimensional variant of the approach for image segmen-
tation presented in [3]. An example result is shown in
figure 1.6. Here three maxima were found that corre-
spond to the three principal orientations of the image.
After applying the mean shift algorithm it is still rec-
ommendable to sort out orientations with a frequency
less than a threshold.
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The question remains which size and shape the
neighbourhood of a junction pixel should have within
which the histogram is calculated. A square window
would favour orientations near 45° and —45°, so a cir-
cular window is reasonable. Its radius has to be large
enough so that sufficiently many edge points are con-
tained for getting a stable histogram, but a window that
is too large can contain edges that are not part of the
junction that is being considered. A radius of 9 turned
out to be a feasible compromise for most cases, but the
optimal choice depends on the junction scale and the
closeness of adjacent structures. Sometimes the problem
arises that not all pixels in the direct neighbourhood of
the junction centre are identified by the threshold crite-
rion. To avoid this, the window should be designed as
an annulus with an inner radius of about 3.

5. RESULTS

Figures 1 and 2 show some application examples of
histogram-based orientation estimation with different
junction types. In a photography showing building
blocks, junctions were identified and an orientation anal-
ysis was performed. Evidently, our algorithm can handle
different kinds of junctions and determine the number of
orientations correctly. In figures 2.3/2.4 it identifies an
erroneously detected junction by finding only one ori-
entation. Figures 2.5/2.6 show a case where the three
orientations within the analysis window {2 are correctly
estimated. The algorithm is, however, not able to sepa-
rate the horizontal orientation from the actual junction
formed by the other two orientated structures. This
problem, though, occurs with the other algorithms as
well.

6. DISCUSSION

Our examples confirm that histogram-based orientation
estimation is an efficient and robust algorithm for the
analysis of junctions that have been found by some cor-
ner detector. It is appropriate for an arbitrary number
of orientations but uses only first-order derivatives. The
results can be used as a starting point to a more precise
examination of the junction by testing in which of the
possible directions that are implied by the orientations
edges are actually present. One obtains a description of
the junction structure which can be used as a feature
for correspondence search or object recognition.
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