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ABSTRACT
This contribution deals with channel estimation and fre-
quency ambiguity resolution in a MIMO OFDM context. Ex-
isting blind frequency-recovery algorithms for OFDM are
able to provide a reliable estimate of the frequency offset
up to an integer multiple of the subcarrier spacing. To re-
solve the remaining ambiguity, one can employ either pilot
symbols or the unknown coded data symbols. Clearly, the
latter method results in a higher bandwidth efficiency. Sim-
ilar considerations hold for the estimation of a frequency-
selective MIMO channel. In this contribution, we propose
a code-aided technique to jointly estimate the channel and
resolve the frequency ambiguity. The estimator is based on
the expectation-maximization (EM) algorithm and exploits
information from the unknown coded data symbols and only
a small number of pilot symbols. A significant performance
gain is observed compared to existing, solely pilot-based es-
timation techniques.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) for
multiple-input multiple-output (MIMO) systems is prom-
ising due to its potential of achieving high data rates over
frequency selective channels. Most receiver schemes are de-
signed with the assumption that channel state information
(CSI) is available. Estimation of the channel state in a MIMO
OFDM context has been the topic of extensive research dur-
ing the last few years. We can categorize the existing chan-
nel estimators into two categories: the so-called data-aided
estimators that are based solely on the presence of pilot (or
training) symbols within the space-time-frequency grid [1,2],
and the so-called code-aided estimators exploiting (addi-
tional) information from the information-bearing coded data
symbols. Typically, code-aided estimators are based on some
iterative approach, where information between the detector
and channel estimator is exchanged. The most convenient
tool in this respect is the iterative expectation-maximization
(EM) algorithm [3], and variations thereof. In the context of
MIMO OFDM, we mention the following EM-based refer-
ences: In [4] the EM algorithm was applied for CSI estima-
tion in the context of uncoded systems with transmit diversity
and in [5–7] a more general approach was taken for Space-
Time Block Coded (STBC) systems.

Another important issue concerning OFDM is its sens-
itivity to carrier frequency offsets. An uncompensated fre-
quency offset destroys the orthogonality between the dif-
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ferent subcarriers, which deteriorates the detection perform-
ance. This makes frequency recovery a crucial task. Both
data aided [8, 9] and blind frequency synchronizers [10, 11]
have been proposed in the technical literature. Most of these
estimators can only recover the fractional part of the normal-
ized frequency offset. What remains is an integer ambiguity
that needs to be resolved. In [9], a training-based scheme is
used to resolve the frequency ambiguity (FA), while in [12],
a FA resolver is proposed that exploits the presence of null
subcarriers. All these estimators were designed for uncoded
single-input single-output (SISO) systems and none of these
estimators are sufficiently accurate at the low SNR values
at which current state-of-the art coding schemes operate.
Hence, a code-aided estimator is called-upon.

As mentioned above, the EM algorithm is well-suited for
the estimation of continuous parameters, such as the channel
impulse response. For the estimation of a discrete parameter,
such as the FA, a modification of the EM algorithm is re-
quired in order to avoid convergence problems. In [13, 14],
an extension to the EM algorithm is proposed to deal with
phase and/or timing ambiguities in an AWGN context. In
the present contribution, we adopt these concepts to derive a
code-aided joint FA resolver and channel estimator.

Notations: Vectors will be underlined, while matrices will
be represented in bold. For instance, IK denotes the K ×K
identity matrix, while 0K is a vector consisting of K zeros.
Time-domain and frequency-domain quantities will be writ-
ten in lower-case letters and capitals, respectively. That way
the FFT of x will be denoted X . The operation circN (x) con-
verts a length-K vector x (with K ≤ N) to a circular N ×N
matrix with first column equal to

[

xT ,0T
N−K

]T
. The opera-

tion shiftγ(x) performs a γ-size cyclic shift on the length-N
vector x, i.e., shiftγ(x) corresponds to the vector obtained
by taking the (γ + 1)th column of circN (x). The operation
diag(x) converts a length-N vector to a N ×N diagonal mat-
rix with x on the diagonal. Finally, we introduce a short-
hand notation for a set (containing vectors/matrices/...), e.g.,
x{1:N} = {x1, . . . ,xN} or X

{1:N} =
{

X
(1), . . . ,X(N)

}

.

2. SYSTEM MODEL

The transceiver is depicted in Fig. 1: a vector of information
bits is encoded, interleaved and mapped onto a sequence of
complex symbols, belonging to a unit energy signalling con-
stellation Ω. The coded symbols are then multiplexed over
NT transmit branches and the resulting N coded symbols on
the m-th branch are denoted X (m) ∈ ΩN , m = 1, . . . ,NT . This
sequence is transformed by an N-point inverse FFT, yielding

x(m) = FX (m) (1)
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Figure 1: MIMO OFDM transceiver.

where F is an N×N matrix with Fp,q = 1√
N

e j2π pq/N . A cyclic
prefix (CP) of length Ng is added in order to avoid that the
dispersive channel causes interference between successively
transmitted OFDM symbols. The resulting N + Ng samples
are applied (at a signaling rate 1/Ts) to a transmit filter and
fed to the m-th transmit antenna.

The signal captured by the nth (n = 1, . . . ,NR) receive an-
tenna is demodulated (using the same oscillator for the all
receive antennas) and applied to a filter that is matched to the
transmit filter. We adopt the common assumptions that all
transmit/receive antenna pairs are affected by the same fre-
quency offset [11] and that channel variations are negligible
within one OFDM symbol. The CP is removed and an FFT
is applied, resulting in the following N ×1 vector

Y (n) = F
H

NT

∑
m=1

Λ(∆ f NTs)circN
(

h(n,m)
)

x(m) +W (n) (2)

where the L × 1 vector h(n,m) denotes the sampled impulse
response (including transmit filter, physical channel and re-
ceive filter) between the mth transmit- and nth receive antenna,

Λ(x)
.
= diag

(

[

1,e j2π x
N , . . . ,e j2π(N−1) x

N

]T
)

and ∆ f NTs denotes

the normalized (w.r.t. the subcarrier spacing) frequency off-
set. The N×1 vector W (n) contains independent white Gaus-
sian noise samples with variance σ 2 per real dimension. We
decompose the normalized frequency offset as follows

∆ f NTs = γ +ν , (3)

where γ is an integer and the fractional part ν is restrained
to |ν | < 0.5. In this paper, we will assume that the fractional
part has been recovered (e.g., using the blind estimators from
[10, 11]) and compensated for, such that ν = 0. This allows
us to rewrite (2) as

Y (n) =
Nt

∑
m=1

F
HΛ(γ)Fdiag

(

H(n,m)
)

X (m) +W (n)

=
Nt

∑
m=1

shiftγ
(

diag
(

X (m)
)

H(n,m)
)

+W (n). (4)

where the N × 1 vector H(n,m) denotes the sampled channel
frequency response between the mth transmit- and nth receive
antenna, and is defined as

H(n,m) = G
Hh(n,m),

with G an L × N matrix containing the first L rows of F

multiplied by
√

N such that Gp,q = e j2π pq/N . Considering
a particular subcarrier k, and defining the NR × 1 vector

Y k =
[

y(1)
k , . . . ,y(NT )

k

]T
, we can write

Y k = H|k+γ |N X |k+γ |N +W k (5)

where |.|N denotes the modulo-N operator, and where Hk de-
notes the NR×NT channel matrix corresponding to subcarrier
k, i.e., the n,m-th entry of Hk corresponds to the k-th entry
of H(n,m). Similarly, the NT × 1 vector X k contains the k-
th subcarrier frequency domain signals transmitted from the
different transmit antennas. It is apparent from (5), that the
FA gives rise to a cyclic shift of γ subcarriers in the frequency
domain.

Data detection

As is done in many state-of-the-art error-correcting coding
schemes, we apply a ’soft’ detector that computes a posteri-
ori probabilities (APPs) of the coded bits and symbol vectors.
This may be achieved as follows: in order to perform soft
demapping and decoding (jointly: soft detection), the vari-
ables Y k need to be converted to probabilities. We denote the
symbol vector likelihood sent from the FFT block to the soft
detector by

{

p(1) (X k)
}

, k = 0, . . . ,N −1, with

p(1) (X k = ω) = C exp

(

− 1
2σ 2

∣

∣

∣
Y |k−γ |N −Hkω

∣

∣

∣

2
)

(6)

where ω is a NT × 1 vector which elements belong to the
signaling constellation Ω and C is a normalizing constant.
These symbol vector likelihoods are then converted to bit
likelihoods and fed to an (iterative) soft-in soft-out detector.
The latter returns the APPs of the coded bits and coded
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(frequency-domain) symbol vectors. The symbol vector
APPs are given by

p
(

X k|Y {1:N},H{1:N},γ
)

= C
′
p(1) (X k) p(2) (X k) (7)

for some normalizing constant C′. In turbo-processing par-
lance, p(2) (X k) is the extrinsic probability of symbol vec-
tor X k, as computed within the soft detector. Many other
coded schemes, e.g. based on space-time or space-frequency
block codes, allow a similar computation of the symbol vec-
tor APPs. In any case, it is clear that the detector requires
knowledge of both the channel and the frequency shift γ in
order to evaluate (7).

3. CODE-AIDED ESTIMATION USING THE EM
ALGORITHM

We resort to the EM algorithm [3] to tackle our estimation
problem. We start with a brief outline of the EM algorithm
and the so-called discrete EM algorithm. As we will elabor-
ate, the latter is required to deal with discrete parameters.

3.1 EM algorithm - principle

The EM algorithm is an iterative technique to acquire the
ML estimates when evaluation of the likelihood is cumber-
some due to some unknown data. The original ML problem
involves the estimation of a parameter(set) θ from an ob-
servation r, by maximizing the likelihood function p(r|θ).
In the presence of unknown data (e.g. unknown transmit-
ted symbols), finding the ML solution can be very difficult.
The main idea behind the EM algorithm is to define so-called
missing (or unobserved) data a, such that, if the missing data
were known, estimating θ would be easy, i.e. maximizing
p(r|θ ,a) is feasible. However, since we do not known the
missing data, an iterative approach is called upon. We de-
note the iteration index by i. Starting from an initial estimate
θ̂(0), we iteratively apply the following two steps:
1. E-step:

Q
(

θ
∣

∣θ̂(i)
)

=

∫

log p(r |θ ,a) p
(

a |r, θ̂(i)
)

da (8)

2. M-step:
θ̂(i+1) = argmax

θ
Q
(

θ
∣

∣θ̂(i)
)

. (9)

The EM algorithm terminates when the estimate has con-
verged or a certain stopping criterion has been met. We de-
note the final estimate by θ̂(+∞). It can be shown that for
continuous parameters the final estimate θ̂(+∞) equals the
ML estimate under some mild restrictions w.r.t. the likeli-
hood function and as long as the initial estimate is sufficiently
accurate. When dealing with discrete parameters, conver-
gence to the ML estimate is no longer guaranteed [15].

3.2 Discrete EM algorithm - principle

To avoid the convergence problems of the EM algorithm as-
sociated with discrete parameters, we adopt the modifica-
tion proposed in [13, 14]. The idea is to split the paramet-
erset θ into a discrete subset θ d and continuous subset θ c,
i.e. θ =

[

θ c,θ d
]

. Assume that θ d can take on values from a
finite set S. We then evaluate the EM-algorithm for a fixed
value of θ d , say θ d = θ̃ d . The M-step becomes:

θ̂ c
(

i+1; θ̃ d
)

= argmax
θ c

Q
([

θ c, θ̃ d
]∣

∣

[

θ̂ c
(

i; θ̃ d
)

, θ̃ d
])

. (10)

where Q(. |. ) (E-step) is defined in (8). After perform-
ing Id iterations between the E-step and M-step, we obtain
θ̂ c

(

Id ; θ̃ d
)

. We repeat the previous steps for all possible val-
ues of θ d . Afterwards, we make a decision w.r.t. the discrete
parameter:

θ̂ d = argmax
θ d

Q
([

θ̂ c
(

Id ;θ d
)

,θ d
]∣

∣

[

θ̂ c
(

Id ;θ d
)

,θ d
])

. (11)

The discrete subset of θ has now been resolved. To further
refine the estimates related to the continuous subset, we may
perform some additional iterations. At the end, the final es-
timate of the parameter θ is given by:

θ̂(+∞) =
[

θ̂ d , θ̂ c
(

+∞; θ̂ d
)]

(12)

where θ̂ d is was found through (11).

3.3 Joint channel estimation and frequency ambiguity
resolution

Let us now turn to our original problem: the estimation of
the channel coefficients H{1:N} and the FA γ . Due to the
invariance property of ML estimation, the ML estimate of
the channel frequency response can be computed from the
corresponding ML estimate of the channel impulse response

Ĥ
(n,m)
ML = G

H ĥ
(n,m)

ML . (13)

where G is defined in section 2. From now on we focus on
the estimation of the channel impulse response h(n,m). Intro-
ducing the NT L × 1 vector h(n) = [(h(n,1))T , . . . ,(h(n,NT ))T ]T ,
we apply the discrete EM algorithm by setting: [h{1:NR}, γ]→
θ , [Y {1:NR}] → r, and [X{1:NT }] → a. Evidently, h{1:NR} cor-
responds to the continuous subset θ c and γ corresponds to
the discrete subset θ d of the parameterset θ . The likelihood
function required for the computation of (8) is given by

log p
(

Y {1:NR}
∣

∣

∣
X{1:NT },h{1:NR},γ

)

=
NR

∑
n=1

2Re

[

shift−γ

(

Y (n)
)H

Xh(n)

]

−h(n)H
X

H
Xh(n) (14)

where we defined the K ×LNT matrix

X =
[

diag
(

X (1)
)

G
H . . . diag

(

X (NT )
)

G
H

]

. (15)

Inserting (14) in (8) and (10) yields the following closed-
form solution for the M-step:

ĥ
(n)

(i+1;γ) =
(

XHX(i;γ)
)−1

X(i;γ)Hshift−γ

(

Y (n)
)

(16)

where

X(i;γ) =
∫

Xp
(

X{1:N}
∣

∣Y {1:N},Ĥ{1:N}(i;γ),γ
)

dX{1:N}
(17)

and

XHX(i;γ) =
∫

X
H
Xp

(

X{1:N}
∣

∣Y {1:N},Ĥ{1:N}(i;γ),γ
)

dX{1:N}
(18)

are a posteriori expectations. It is readily seen that the com-
putation of XHX(i;γ) requires second order symbol mo-
ments. However, it can easily be shown that only second
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order moments of symbols belonging to the same subcar-
rier are required. This implies that X(i;γ) and XHX(i;γ)
can be computed based on the marginal symbol vector APPs

p
(

X k|Y {1:N},Ĥ{1:N}(i;γ),γ
)

, rather than the joint symbol

vector APP p
(

X{1:N}
∣

∣Y {1:N},Ĥ{1:N}(i;γ),γ
)

. Fortunately,

these marginal APPs are exactly the quantities provided by
the detector as described in section 2. Hence, the channel es-
timator can be easily implemented in any practical system as
long as a soft detector is available.

For every possible value of the discrete parameter γ , we
perform Id channel estimation iterations (16). Afterwards we
make a decision with respect to γ according to criterion (11).
For the evaluation of (11), we insert (14) into (8). We have
verified through simulations, that dropping the second term
in (14) does not affect the performance of the FA resolver.
Hence, if we ignore this term, our criterion becomes

γ̂ = argmax
γ

NR

∑
n=1

Re

[

shift−γ

(

Y (n)
)H

X(Id ;γ)ĥ
(n)

(Id ;γ)

]

.

(19)
Again, implementation is feasible since the operation of the
FA resolver is based on soft information, (i.e., marginal sym-
bol vector APPs) provided by the detector.

Once the ambiguity γ has been resolved, further itera-
tions may be performed to refine the corresponding channel
estimate. After convergence, we obtain the final channel es-

timate ĥ
(n)

= ĥ
(n)

(+∞; γ̂).

3.4 Initialization and complexity considerations

Initialization

The EM algorithm requires an initial estimate of the channel.
Therefore we have to insert a few pilot subcarriers to provide
this initial channel estimate. It was shown in [2], that the
minimal number of pilot subcarriers required to estimate the
channel is given by Np = L×NT (per transmit antenna). In
this contribution, we aim at a minimal pilot overhead, hence
we choose the number of pilot symbols equal to L×NT . We
further adopt the optimal placement and optimal values of
the pilot symbols from [2]. The pilot symbols are also in-
cluded in the EM algorithm: as their values are known to the
receiver, their APPs are Dirac distributions.

Complexity considerations

The EM algorithm is iterative and, generally, the detector
tends to be iterative as well (e.g., when performing iterat-
ive demapping or when deploying a turbo-code). Hence, in
case of iterative detection, EM estimation becomes hugely
complex: each time the estimates are updated, APPs have to
re-computed, requiring many iterations within the detector.
The resulting complexity will scale as the number of detector
iterations times the number of EM iterations. As this may
be prohibitive, we resort to the concept of embedded estim-
ation [16]: each time the channel estimate is updated, only
a single iteration within the detector is performed. Further-
more, extrinsic probabilities are not reset from one EM iter-
ation to the next. This allows for a huge saving in computa-
tional complexity.

Furthermore, the discrete EM algorithm requires that for
every possible value of the discrete parameter γ , we carry out
Id iterations. Thus, denoting by dmax the number of possible

values of γ , the total number of iterations required for the dis-
crete EM algorithm is Iddmax. We can limit the computational
complexity by restricting the value of Id . As we will show in
the next section, the algorithm performs well for Id = 1 or
Id = 2, depending on the considered SNR. So the computa-
tional load required for FA resolution can be reduced to a
strict minimum.

4. NUMERICAL RESULTS

We present some simulation results to illustrate the perform-
ance of the proposed joint channel estimation and FA res-
olution technique. We consider a NT = 2, NR = 2 MIMO
system with a channel impulse response length of L = 4.
The number of subcarriers is N = 256. We make use of a
rate 1/2 recursive convolutional code with octal generator
polynomials (31,37)8, along with {−1, 1} BPSK signaling.
A random interleaver separates the encoder from the spatial
multiplexer and symbol mappers, to fully exploit the spatial-
and frequency diversity of the channel. As explained in sec-
tion 3.4, we apply a minimal number of pilot subcarriers
to provide initial channel estimates; this number is equal to
Np = L × NT = 8. The remaining subcarriers are used for
coded data transmission. Each codeword corresponds to 248
information bits. Performing rate 1/2 encoding, interleav-
ing, spatial multiplexing and symbol mapping, we retain 248
coded symbols. We also compare our estimator to data-aided
estimators using more than 8 pilots. In this case, we reduced
the number of information bits to allow additional pilot sub-
carriers.

The channel was generated according to the following
model: for each transmit- and receive antenna pair, the taps
{

h(n,m)
k

}

k=0,...,L−1
are zero mean iid complex Gaussian ran-

dom variables, normalized such that the expected energy per
subcarrier (per transmit- and receive antenna pair) is equal to
1 (i.e., 1/2 per real dimension). The set of possible frequency
ambiguity values is chosen equal to S = [−2,−1,0,+1,+2],
such that γ can take on 5 different values.

A convenient measure to evaluate the performance of the
FA resolver is the FA error rate (FAER), being the fraction of
OFDM symbols for which the frequency ambiguity recovery
fails. The latter has a direct relation the overall BER. De-
noting the BER with perfect FA recovery and perfect CSI by
BERp, we can approximate the actual BER performance with
FA errors as

BER ' BERp (1−FAER)+
1
2

FAER

= BERp

(

1+
1
2

FAER
BERp

)

since roughly 50% of the bits will be erroneous when a FA
error occurs. Hence, we understand that the impact of FA er-
rors on the overall BER is marginal as long as FAER

BERp
¿ 1. Let

us examine the estimators with respect to this measure. A
few remarkable results are observed in Fig. 2. First, the ratio
FAER
BERp

(yet also the BER degradation caused by FA errors) in-
creases with increasing Eb/N0 for the ML data-aided estim-
ators. The opposite behavior is observed for the EM code-
aided estimator. This also translates into the BER plots from
Fig. 3, where we observe a flooring effect for the data-aided
estimators, while no such phenomenon is observed with the
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code-aided estimators. It is also apparent from Fig. 2 and
Fig. 3, that the number of iterations required to make a re-
liable decision w.r.t. the FA, can be limited to Id = 1 or
Id = 2. Hence, the computational overhead caused by the
FA resolver is minimal. The performance of our code-aided
estimator is very close to the performance of a receiver that
has perfect channel state information and perfect knowledge
of the FA. All these arguments advocate the code-aided al-
gorithm as an appealing alternative for its data-aided coun-
terpart.

5. CONCLUSIONS

We have proposed a joint channel estimation and frequency
ambiguity resolution algorithm for coded MIMO OFDM sys-
tems. By associating one codeword to each OFDM symbol,
the channel estimation and frequency recovery can be car-
ried out from the observation of a single OFDM symbol.
The algorithm is based on the EM algorithm and it iterates
between data detection and estimation. Because the EM al-
gorithm generally fails to estimate discrete parameters (such
as the frequency ambiguity), we resorted to a recently pro-
posed EM extension. Computer simulations were run for a
bit-interleaved coded modulation scheme with spatial multi-
plexing. The proposed code-aided estimator exhibits excel-
lent performance results. Application to other (coded) con-
figurations is conceptually straightforward, as long as a soft-
information providing detector is available.
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