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ABSTRACT

We consider the detection of a signal in the presence
of both interferences that lie in a known subspace and
white noise. The signal to be detected is the product
of an unknown amplitude and a known signature-vector
that is itself subject to additive white Gaussian noise.
We develop the maximum likelihood estimates (MLE) of
the problem in order to apply the generalized maximum
likelihood test (GLRT) to our detection problem. The
performances of the proposed detector are illustrated
by means of numerical simulations and it is compared
to the standard matched subspace detector.

1. INTRODUCTION

In many applications it is desired to detect the pres-
ence of a signal s whose observation y is perturbed by
interferences i and noise e:

y=s+ite, s=px, i=Ap

The signal s € R is the product the amplitude u € R
and a signature € RY. The interferences i € R" lie in
a known m-dimensional subspace of RV that is spanned
by the column vectors of the matrix A and e € RY rep-
resents the additive broadband noise. Observing y the
problem is to decide if p is equal to zero or different
from zero. This is one of the problems considered in [1].
We consider the case where the signature x is unper-
fectly known. It may be difficult to obtain or may be
perturbed due to uncalibrated arrays, uncertainty in the
localization, local scattering, etc. This case has been of-
ten considered, see [3, 4] and the references therein. The
idea is to develop robust approaches or to identify s or
z prior to detection. We believe that the model we con-
sider in this contribution and which is described below
has never been considered. It is somehow in between the
two approaches alluded to above since we both identify
the exact underlying = while using a robust modeling
approach. The fact that we consider the interference
subspace to be perfectly known is of course somehow
restrictive and using our modeling approach it might be
possible to remove this assumption, further investiga-
tions are needed. In section 2, we define the model we
use, in section 3, we develop the maximum likelihood es-
timates that are used to build the generalized likelihood
ratio test in section 4. Simulation results are presented
in section 5 before we conclude in section 6.

2. THE MODEL

We are given two N-dimensional observation vectors y
and z and we assume that they satisfy

y=pr+Ap+e, z=xz+n (1)

where e and n are independent Gaussian N-dimensional
perturbation vectors with covariance matrices respec-
tively o2Ixy and o?0%Ix. The vector Ap represents the
interferences that lie in the m-dimensional range of the
known (N, m) matrix A. The aggregated matrix [A z]
is assumed to be full column rank m+1. We assume
m+1 to be smaller than N and indeed much smaller for
the actual signal to noise ratio to be non-vanishing.

We will further assume that « and ¢ are known. One
could of course assume more complicated but known co-
variance matrices for e and n without gaining in gener-
ality. One may relax the assumption on ¢ but not on «
being known. As a matter of fact a is not identifiable
even under Hy, i.e., the likelihood function can be made
infinite by a proper choice of & when this parameter is
assumed unknown.

3. THE MAXIMUM LIKELIHOOD
ESTIMATES

From the model described in (1) and the different as-
sumptions we made, it follows that the quantities to be
estimated are p, ¢ and z. The joint probability density
function of y and z is easily deduced from the joint den-
sity of e and n which are independent random vectors.

The opposite of the log-likelihood function of the set
{y, z} is then, up to additive and multiplicative con-
stants, equal to

N

() =Y i~ i — a9 + (- m) Q)

or equivalently in matrix form

1
Up, ¢, @) =lly =z — Apl® + —llz ==l (3)

where y;, z;, z; are the i-th components of the corre-
sponding vectors, al is the i-th row of A and ||z|? =
>, @7 is the square of the Euclidean norm. The max-
imum likelihood estimates (MLE) of pu, ¢ and z are
obtained by minimizing #(.). The minimum with re-
spect to (w.r.t.) ¢ is attained at ¢ = At (y — ux) where
At = (ATA)7'AT is the pseudo-inverse of A. After

substitution one has

. 1
min [[(1 — AAT)(y — p2)|* + — Iz — =|*
n, 07
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Let us now denote y!l = AA*y the projection of y on
the range of A and y* = (I — AAT)y its orthogonal
complement in RY. We denote similarly z!l, 2+, 2l and
21 and rewrite the previous minimization as

1 1
: 1 12 [l | P S BT D] [l [ | Y | TP
min x + z x + z x
min |yt P it et gl =l
The minimum w.r.t. zl is attained for zl = 2Il so

that the last term vanishes. Let us now introduce the
(N,N—m) orthogonal matrix @ which is such that the
projection matrix I — AAY = QQ7T. One then has
lzt]1?2 = [|QQTz||?> = ||QTz|?> and this tells us that
z' has indeed only N-m degrees of freedom. The min-
imization problem can now be rewritten

1
e =2 L s =2
rg};lly pz|l” + —lz - =l

where 2 = QTz, § = Q"Ty and z = QT%. This is a
non-linear optimization problem in which one recognizes
a total-least-squares (TLS) problem whose solution is
known to depend upon a singular value decomposition
(SVD) [5, 6, 9]. To put it into the basic TLS form we
introduce a last change of notation. Let i = au, 2 =
Z/a and & = T /a to get

min ||§ - Az||* + || — 2|
B.Z
setting p = Z — & and r = § — [iZ, it becomes

min [|p||* + [|r||” subject to (£ —p)a=7—r
i

WP

which can in turn be rewritten as

min ||A[|% subject to (C — A) [ ,ul ] =0 4
Aji -

with A = [p 7] and ¢ = [ 7] and ||A|%2 =
2ij A?’j =trace(ATA) is the square of the Frobenius
norm of A. This optimization problem amounts to seek
the perturbation A with smallest Frobenius norm that,
when subtracted from C' makes the matrix C = C — A
rank deficient. The solution of this problem is known.
The optimal A is §minﬂmin@£in the rank-one matrix as-
sociated with the smallest singular triplet in the SVD
of C and the value of the optimal cost is thus 42, . The
MLE of i = ap is then deduced from the ratio of the
two components of the 2-dimensional vector Umin

_ ﬁmin (1)
B 'f)min (2) (5)

=v

and & = 7 — SminGimin®L;, (1). One can obtain the sta-
tistical properties of these estimates by computing the
Fisher information matrix and inverting it [7] but they
are indeed easier to obtain from first order matrix per-
turbation analysis [8, 9, 10]. We do not perform this
analysis right now, we postpone it to section 4.3 where
we only develop the parts that are useful for our pur-
pose.

4. DETECTION
4.1 The generalized likelihood ratio test

In this section, we consider the detection problem
associated with our model. Observing y and z we want
to decide between the two hypotheses:

H,: y=Ap+te,
Hy: y=px+ Ap +e,

z=x+n
z=x+n.

i.e. to decide whether u is equal to zero or p # 0.
We propose to use the generalized likelihood ratio test
(GLRT) to take the decision. Since the different noise
variances are known it is convenient to work with twice
the logarithmic GLR we denote L(y, z). With the nota-
tions introduced in (3), one gets

1
L(ya Z) = E{ ﬂ(ﬂ’ ¢7§7|H0) - ﬁ(ﬂ, 955 9A3|H1)}
where £(fi, $, Z|Hy) is the value of the minimum of £(.)
under hypothesis k, i.e., when the unknown parameters
are replaced by their ML estimates.

Under H,, when p is known to be zero, the value of
the minimum of (3) with respect to ¢ and z is easily
found to be £(0, ¢, #|H,) = yT(I— AAT)y =4TQQTy.
Under H; we have seen above that the value of the min-

imum of £(.) is £(fi, ¢, #|H1) = 82,,,, the square of the
smallest non-zero singular value of
A L zZ QT2 T
C = = | — = _— .
[2yl=[2 9= QY (6)

which is also the smallest eigenvalue of the order two

positive definite matrix CTC. It follows that the loga-
rithmic GLR, we will use in the test, takes the form

Ly, 2) = 5 {47QQTy ~ (@) (D)

where we replaced 82, by the more explicit notation

s2. (C). Using (6), it is easy to show that L(y, z) is al-
ways positive. In order to characterize the detection test
which will consist in comparing L(y, z) with a thresh-
old 7, we need to get the probability density function
(p.d.f.) of L(y, z) under both H, and H;. Since the
hypothesis H, is simple, the threshold n will be set to
give a given false alarm rate Pr4 and the probability
of detection Pp under H; is then a function of the val-
ue of the parameter . We are in the case where the
alternative is composite.

4.2 Matrix perturbation results

To evaluate the probability density function (p.d.f.) of
L(y, z) under both hypotheses we apply results from
matrix perturbation theory [9, 8]. They will tell us how
the noises e and n present in the observations (1) in-
fluence the parameter estimates. Though this theory is
purely deterministic and is merely a first order expan-
sion, it can be applied to stochastic signals and yield
valuable information on, e.g., the characteristics of the
asymptotic distributions, once it has been established
by other means that it exists, e.g., that a central lim-
it theorem holds. Here we use this theory to get the
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statistical properties of spmin(C), the smallest singular
value of the (N-m,2)-dimensional matrix C' (6). Indeed
C can be seen as the sum of an ezact matrix C and a
perturbation A:
N QTz Q™n
C=C+a=[T" QT+ 14" QT @)
Note that the scaling by « in the first column of A
makes all the entries of this matrix have zero mean and
identical standard deviation o, a prerequisite in matrix
perturbation analysis.
Since the smallest singular value of C, smin(C) is ze-

ro, one expects smin(C) to be quite small. Indeed since
it can only increase the perturbation theory relative to
smin(C) is of a different nature than those of non-zero
singular values. It is also more intricate. We present
in the appendix a proposition that summarizes the cor-
responding first order perturbation results. Applied to
the perturbation of spin(C) the proposition says that

Smin(é) = “UzTAvmin” + 0(02) 9)

where U, is an orthogonal basis of the (N-m-1)-
dimensional null-space of CCT and vmin the single basis
vector of the one-dimensional null-space of CTC. From
the definition of C' above or from (4) it follows that

Vmin = [—ap 1]/(1+a®u®)Y2. (10)

This result holds only asymptotically, i.e., for small
enough perturbation A in (8).

Remark on the asymptotics

As opposed to the situation in [1] where the results
are non-asymptotic and the statistics involved somehow
ancillary, here because the model (1) is non-linear, the
results are only valid asymptotically and it is important
to characterize their domain of validity. Surprisingly
using matrix perturbation analysis one can indeed be
more precise than in standard statistical analysis.

Here asymptotic means for small enough perturba-
tion A in (8). Since all the components in A are ze-
ro mean and have identical standard deviation o, this
holds for ¢ small enough or more generally for large e-
nough signal to noise ratio, an SNR, that has yet to
be defined. More precisely, the validity of (9) relies on
the well-separateness of the singular values of interest.
In the present case, it holds if s1(C) > s2(C) with
51(C) and s3(C) the two singular values of C. Since
$2(C) = smin(C) = 0, the single non-zero singular value
of C, s1(C) is equal to the square root of the trace of
CTC. But s1(C) > 0 has no real meaning and should

be replaced by s1(C) > s5(C) which can be checked

on each individual C-matrix. In fact s1(C) will vary

by about ¢ while s5(C) will increase by as much as
oV N —m — 1 as follows from (9) and will be established

in section 4.3. In summary, the analysis we perform is
valid if
zTQQT

o2

1 2
(E+u)>>N—m (11)

One should have a ratio of at least ten between both
sides and this can be checked either on the data or a
priori on the model. This kind of situation where the
domain of validity is explicit and can be checked is quite
rare in statistics! Note that for a = 0, i.e., in the stan-
dard situation of [1], this condition is always satisfied.

4.3 Statistical analysis

We now evaluate the statistical properties of L(y, z)

1 N
L(y, 2) = — { 4" QQ"y — 57, (O)}
under both H, and H;. Under H,, see (8):

T T
C=C+A=[—= 0+ 19" Qe

and QQTy = QQTe, the first term in L(.) becomes
eTQQTe. To evaluate the second we observe that vmin
in (10) becomes v, = [0 1] and substituting vmin and
A in (9) one has

Smin(é) s ||U2TQT€||
and therefore
€TQ(IN_m — UzUQT)QTe

L(y, #IH,) = ~ -

(uf Qe)?

o2

where w; which is such that In_,, — U2U2T :uluf
is a basis of the one-dimensional range-space of C.
Since uTQTQui=1, it follows that, asymptotically,
L(y, z|H,) behaves like a chi-square random variable
with one degree of freedom, i.e., the square of a stan-
dard Gaussian random variable, L(y, z|H,) : Xx3.

The analysis is similar under Hj, the matrix C' is
now

. T T
0=1L2 4o+ @

and QQTy = pQQ"z + QQe. To evaluate the distri-
bution of the first term in L(y, z|H;) one can note that
QTy = pQTz+Q"e where Qe is a zero mean Gaussian
vector with covariance matrix 62In_p,. The first term
thus follows

THOT 2
y QQ7y Iz

o2 : X?V—m(?mTQQTm)
a chi-square random variable with N-m degrees of free-

dom and non-centrality parameter %mTQQTm. With
Umin 10 (10) and A just above, one has

1U3 (—apQ" 2 + QTe)||

$min(C) =~ (1+ a2p2)1/2

which leads to, omitting the zero mean cross-products
2 (0N ~ 1UF @ el + o p*|UF QT 2 |I?
smin( ) - 1+ a2u2
since both [|[UfQ7e|>/o? and |UFQTZ|?>/o? are

X3_m_, random variables, it follows that s2; (C)/o?

min
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is a random variable with mean N —m — 1 and variance
2(N —m—1)(1+apt)/(1 + o®p?)%

Combining these two partial results and taking into
account the dependency existing between them, one has
that the distribution of L(y, z|H;) admits no analytical
expression, it is a random variable with mean 1 + A2
with A2 = ";—zmTQQTa: and variance:

2(1+2X2) + 4(N —m — 1)(a?u?) /(1 + a2 p?)?.

Its mean is the one of a x?(\?) random variable but its
variance is larger by 4(N —m — 1)(a?p?) /(1 + a®u?)? a
term that vanishes with a.

5. SIMULATION RESULTS
5.1 The test procedure

In summary, to test between

Z2=x+n
zZ2=x+n.

H,: y=Ap+e,
Hi: y=px+ Ap+e,

i.e., a simple hypothesis H,, 4 = 0 versus a compos-
ite two-sided alternative p # 0, we propose to use the
logarithmic GLR which is given by

Ly, z) = — (I - AA*)y — 2.(O)}

2
where smin(é) is the smallest singular value of

C=[z g)=(-A4) [ y
We have shown that L(y, z) which is positive with prob-
ability one, is asymptotically close to central chi-squared
random variable with one degree of freedom under H,
and that under H; it is close to a chi-squared random
variable with one degree of freedom and non-centrality
parameter

A?_IJ’_Z T _ +
= ¢ (I —AA )z

with however a larger variance. We thus decide that
H, is true when L(y, z) < n and that H; holds when
L(y, z) > n where the threshold 7 is fixed to achieve a
given false alarm probability

Pra=1-Prix2(0) < n}. (12)
The probability of detection is then difficult to compute
but depends upon p trough A% which can be seen as an
SNR. The notation Pr{xj(A?) < n} denotes the proba-
bility that a x? with non-centrality parameter A2 is less
than 7.

5.2 Receiver operating characteristics

The receiver operating characteristics (ROC’s) for this
detector are presented in Figure 1.They are obtained by
simulations. For 5 different probability of false alarm-
s (Pra) we represent the probability of detection as a

function of the SNR=4527 (I — AA*)z. The thresholds
are obtained using relation (12) and we have checked
that as soon as condition (11) is satisfied there are no
discrepancies between the expected Pra’s and those
observed on the simulations. In each case we further

consider 4 different values of @2, namely o2 equal to
0, 1/4, 1/2 and 1. Remember from (1) that a? is the
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Figure 1: ROC for proposed method, Pfa equal to 10~*
for k=1to5and a®> =0, 1/4, 1/2, 1.

Detection Probability
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Figure 2: ROC for Pfa equal to 107% for k = 1 to 5
and o® = 1/2. In each pair of curves: proposed detector
(solid line) and standard detector (-*-line).

ratio between the variance of the noise n that affects
the signature and the variance of the noise e present in
the observations. For o? = 0, we are in what we will
call the standard case considered in [1]. In this case our
detector has performance similar to the one developed
in [1]. Further investigations are necessary to analyze
this point. One sees in Figure 1 that the probability
of detection are essentially independent of the value of
a?, the four curves are almost indistinguishable for each
value of Pr4.

In Figure 2, we compare for the same 5 values of Pr4
and the same range of SNR’s, the probability of detec-
tion (Pp) of our detector and the Pp of the standard
detector [1] for a® = 1/2. One sees that our detector
outperforms slightly the standard detector. This is quite
natural since our detector is designed for the model (1)
we simulated while the standard detector is optimal on-
ly if a® = 0. The loss in Pp is quite small. To complete
the picture we present in Figure 3, the Pp of the stan-
dard detector [1] for 3 values of Pr4 and the 4 different
values of a2, namely a? equal to 0, 1/4, 1/2 and 1. As
a? increases, the performance degrades in a regular way
which is again quite as expected.

Note that we have been careful and always respected
(11) in our different simulations. This guarantees their
validity.
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Figure 3: ROC for 3 different Pfa for standard approach
and o2 =0, 1/4, 1/2, 1.

6. CONCLUSIONS

We have proposed a new detection problem and devel-
oped the associated GLRT. The contribution can be
viewed as an extension of one of the matched subspace
detectors of [1]. We have only considered the case where
the noise covariance matrices are known and further in-
vestigations are needed to remove or to alleviate this
assumption. One can note that the presence of inter-
ferences is easily taken care of and actually introduces
no additional difficulty. Another important issue that
requires further analysis concerns the influence on the
performance of a wrong choice of a. What happens to
the performance of the proposed detector when we as-
sume the presence of noise on z with a given level «a
while z is perfectly known and the standard test would
be optimal? Simulations we performed indicate that
there is no loss in performance but this remains to be
established theoretically.
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7. APPENDIX

We present a result from matrix perturbation analysis
that concerns the singular value decomposition of a rank
deficient matrix [8, 9, 10].

Let C be an (N,m + 1) dimensional matrix of rank
m with m + 1 < N and singular value decomposition
(SVD) C = USVT. We partition U, S and V as

ST — S(')l 5,,?+1 8 , U=[U1 um41 Us], V=[Vi vm41]
with S; a diagonal order-m matrix, S;= diag(s;) and
§1 > 82 > .. 2 Sm > Sm41 = 0. The matrix Uy =
[um+1 Us] is an orthogonal basis of the null-space of
CCT and v,y is the single zero eigen-vector of CTC.
Partitioning in a similar way the elements U , S and V
of the SVD of €' = C + €A the following result can be
shown to hold concerning the smallest singular triplet
of C [11]

Proposition: For sufficiently small € and a given
perturbed matrix C‘, there exists a C‘—dependent or-
thogonal basis Us = [Um+1 Us] of the null-space of

CCT such that

Uz = Uz + O(e)
Dma1 = Umy1 — €CTAvp 1 + O(€?)
s = | UF Ao | + O(e) 0

Note that the specific perturbation dependent basis U
only intervenes in the first part of the proposition.



