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ABSTRACT

A novel approach for robust hands-free speech recognition in highly
reverberant environments is proposed. Unlike conventional HMM-
based concepts, it implicitly accounts for the statistical dependence
of successive feature vectors due to the reverberation. This prop-
erty is attained by a combined acoustic model consisting of a con-
ventional HMM, modeling the clean speech, and a reverberation
model. Since the HMM is independent of the acoustic environment,
it needs to be trained only once using the usual Baum-Welch re-
estimation procedure. The training of the reverberation model is
based on a set of room impulse responses for the corresponding
acoustic environment and involves only a negligible computational
effort. Thus, the recognizer can be adapted to new environments
with moderate effort. In a simulation of an isolated digit recognition
task in a highly reverberant room, the proposed method achieves a
60% reduction of the word error rate compared to a conventional
HMM trained on reverberant speech, at the cost of an increased
decoding complexity.

1. INTRODUCTION

Automatic speech recognition (ASR) is the key to numerous appli-
cations like natural human-machine interfaces, dictation systems,
electronic translators and automatic information desks. To further
increase the acceptance of these applications, it is desirable that the
user can move freely while communicating to the system without
the need of wearing a headset or any other kind of close-talking
microphone.

Since the distance between speaker and microphone in such a
hands-free scenario usually is in the range of one to several meters,
there are two kinds of distortions that hamper ASR. Besides the
desired signal, the microphone picks up reverberation of the desired
signal and unwanted additive signals like background noise signals
or interfering speakers. While significant progress has already been
reported within the last decade regarding the robustness of ASR to
additive distortions, ASR for highly reverberant environments has
only recently attracted increasing attention.

For reliable speech recognition in reverberant environments,
two classes of approaches are known. Either the speech signal
picked up by the microphone is dereverberated prior to speech
recognition, or the recognizer itself is made robust to reverberation.
Both ways are currently intensively investigated.

Blind dereverberation of the speech signal is an extremely chal-
lenging task, since neither the impulse response of the acoustic path
between speaker and microphone nor the speaker’s signal are avail-
able. As this paper focuses on the realization of a robust recognizer,
we refer to a review article [1] and to several promising methods
[2, 3, 4] for a further discussion on blind dereverberation.

The most straightforward approach of obtaining an ASR system
capable of working in reverberant environments is to train a conven-
tional HMM-based recognizer using data recorded in the very en-
closure where the recognizer will be deployed. To reduce the enor-
mous effort implied in collecting a complete set of training data for
each new environment of operation, artificial reverberation of clean

training data has been suggested [5, 6] and has been shown to yield
a noticeable improvement.

While the usual model adaptation techniques, which have been
successfully applied in noisy environments, are not suitable for re-
verberation significantly exceeding the frame length of the recog-
nizer, Raut et al. [7] suggest a model adaptation approach designed
particularly for long reverberation. Here, the linear means of a split-
state HMM are adjusted taking into account the linear means of the
preceding states. Thus, the amount of necessary training data and
the computational complexity is considerably reduced compared to
reverberant training, and a significant improvement in recognition
rate compared to a HMM trained on clean speech is reported in
[7]. However, both reverberant training and model adaptation tech-
niques suffer from the underlying assumption of any HMM-based
system, namely that the current output vector depends only on the
current state. This assumption prevents conventional HMMs from
appropriately modeling reverberation.

In this paper, we propose a novel approach for robust speech
recognition in reverberant environments, where the dependence
of the current feature vector on previous vectors is implicitly ac-
counted for by a combined acoustic model. The combined model
consists of a conventional HMM, modeling the clean speech, and a
reverberation model. Since the HMM is independent of the acous-
tic environment, it needs to be trained only once using the usual
Baum-Welch re-estimation procedure. The training of the reverber-
ation model is based on a set of room impulse responses for the
corresponding acoustic environment and involves only a negligible
computational effort. In this way, the recognizer can be adapted to
new environments with moderate effort.

The paper is organized as follows: In the following section, the
proposed approach is explained in detail. Simulations of an isolated
digit recognition task, described in Section 3, show the effectiveness
of the new recognizer. In Section 4, conclusions are drawn and
important topics for future work are outlined.

2. THE PROPOSED APPROACH

We introduce the combined acoustic model from the perspective
of feature production. Before deriving a solution for the decoding
of the combined model, detailed descriptions of the reverberation
model and the convolution in the feature domain, which is the basis
for the combination of the two models, are given.

2.1 Feature production model

We assume that the sequence X of reverberant speech feature vec-
tors x(n) is produced by a combination of an HMM A describing the
clean speech, and a reverberation model 1) as illustrated in Figure 1.
This model for the production of reverberant feature vectors can be
applied to any kind of speech features as long as an appropriate re-
lation between the sequence S of output feature vectors s(n) of the
clean speech model, the sequence H of the reverberation model out-
put matrices H(n) and the sequence X of reverberant speech feature
vectors x(n) can be formulated. In this paper, we apply this model
to mel-frequency spectral coefficients (melspec coefficients), which
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Figure 1: Proposed feature production model.
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Figure 2: Calculation of melspec coefficients as a preliminary stage
of MFCCs.

are the basis for the calculation of the well-known mel-frequency
cepstral coefficients (MFCC) as depicted in Figure 2.

The melspec features are chosen because they allow the formu-
lation of a very simple approximative relation between S, H and X.
The reverberant speech feature sequence X results from the con-
volution of the clean speech feature sequence S originating from
the HMM and the sequence H of realizations of the reverberation
model.

2.2 Convolution in the melspec domain

The convolution in the melspec domain is performed according to

M—1
x(n)th(m,n)@s(n—m) Va=1..N+M—-1 (1)

m=0

where © denotes element-wise multiplication, s(n) and x(n) are
single feature vectors at frame index n of clean and reverberant
speech, respectively, and the vector h(m,n) is a realization of the
reverberation model for frame delay m and frame index n. N and M
are the lengths of the sequence S and the number of columns of the
matrix H(n), respectively.

The true reverberant speech feature sequence X,, which is the
actual input to the ASR system, however, is calculated from the
reverberant speech signal x(k) as illustrated in Figure 2. The signal
x(k) results from the linear convolution of the clean speech signal
s(k) and the impulse response h(k) of the acoustic path between
speaker and microphone. Compared to the true sequence X,, the
computation of X by the convolution in the feature domain includes
the following approximations:

e The constraint which had to be applied to realize an exact linear
convolution by the overlap-save method [8] is neglected.

e Due to the squared magnitude operation in the feature extrac-
tion, the phase is ignored.

e Because of the mel-filtering, the frequency resolution is re-
duced.

o Since the order of convolution and feature extraction is reversed,
the squared magnitude of a sum in the computation of X; is
replaced by a sum of squared magnitudes in (1).

Despite these approximations, the convolution in the melspec do-
main is still very closely related to the true reverberant speech fea-
tures as can be verified in Figure 3 by comparing the clean feature
sequence S, the true reverberant feature sequence X, and the rever-
berant feature sequence X resulting from melspec convolution for
room B (see Section 3.1).
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Figure 3: Comparison of a) clean feature sequence S, b) true rever-
berant feature sequence X, and c) reverberant feature sequence X
calculated by melspec convolution.
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Figure 4: Realization H of the reverberation model 7).

2.3 Reverberation model

The reverberation model 1 represents an independent identically
distributed (iid) matrix-valued random process, where each column
of the matrix corresponds to a certain delay m (in multiples of the
frame shift) and each row of the matrix corresponds to a certain
mel channel /. The sequence H of reverberation feature matrices
H(n) is a realization of this random process as illustrated in Fig-
ure 4. For simplification, each element of the matrix is assumed to
be statistically independent from all other elements and is modeled
by a Gaussian density. Furthermore, the iid property of the random
process implies that all elements of the random process at frame in-
dex n| are statistically independent from all elements of the random
process at frame index n, as long as n; # n,.

The starting point for the training of the reverberation model is
a set of room impulse responses (RIRs) for different microphone
and loudspeaker positions of the room where the ASR system will
be applied. These RIRs can either be measured before using the
recognizer, estimated by blind system identification approaches or
modeled, e. g., using the image method as suggested in [9]. To
train the reverberation model, the RIRs are aligned so that the di-
rect path of all RIRs occurs at the same delay. Calculation of the
melspec representation yields a matrix of melspec coefficients for
each impulse response. Using these coefficients, the means and the
variances of all matrix elements are estimated. Alternatively, the re-
verberation model can be directly estimated in the feature domain.
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2.4 Decoding

So far, we introduced a novel feature production model, describ-
ing how reverberant speech features are generated given the model.
For speech recognition however, the opposite task has to be solved.
Given a reverberant utterance, a set of clean speech HMMs and a re-
verberation model, the task of the recognizer is to find the sequence
of HMMs which best models the reverberant utterance in connec-
tion with the reverberation model.

For simplification, we restrict the following treatment to iso-
lated word recognition using a single HMM for each word in the
dictionary. Then the recognition process reduces to calculating the
production probability for each word-level HMM and selecting the
word corresponding to the most probable HMM.

Conventional HMM-based isolated word recognition uses the
Viterbi algorithm or the iterative calculation of the forward proba-
bility to find the production probability for each HMM. To deter-
mine the production probabilities for the proposed combined mod-
els, an extended version of the Viterbi algorithm is introduced,
which will be explained in detail in the following.

Given the reverberant speech feature sequence X,, a set of clean
speech HMMs {A,, }, where p = 1 ... P indexes the P different word
models in the dictionary, and a reverberation model 7, the task of
the recognizer is to find the HMM p) maximizing the probability that
the reverberant feature sequence was produced by the combination
of A and n. This is achieved by maximizing the joint probability
of the clean feature sequence S, the state sequence Q of the word
model A, and the sequence of reverberation features H

A= argmax{P(S*,Q"H'[1,,n)}

P

= P(S,0,H|A
argzlax{sr’rlgaj)ﬁ{ (S,0,H|Ay,m)}}

subject to (s. t.) the constraint (1).
An approximative solution of

max (P(S.Q.H3p.m)} s.t.(D)
is obtained by an extended version of the Viterbi algorithm for each
HMM A,,.

To simplify the notation, the subscript p is omitted in the fol-
lowing outline of the extended Viterbi algorithm. Defining the best-
path probability of state j at frame n

s(1)...s(n), H(1)...
(n) = P
7j(n) S(1n) Ol 1) FE (1) ( q(1)...q(n—1),
where g(n) is the HMM state at frame n, and S(1...n), Q(1...n)

and H(1...n) denote partial sequences from frame 1 to frame n,
and the backtracking pointer l[/j(n) referring to the previous state,

the extended Viterbi algorithm is given by

.H(n),
q(n) =jlA,n ) '

Init:
n) = (max {fk (1,s( fn( (0, ))}7
s. t. x(1) =s(1)-h(0,1)
(1) = 0 Vj=2..1,
l[/j(l) = 0 Vj=1...1.
Recursion:
v(n) = mf‘x{?’i(”*l)‘aij'aij(”)} )
y;(n) = 3rgll_nax{7i(”71)'“,-/-‘01']'(”)} ,
01_/(”) = max {fg(jssfj(”))'fn(Hi_,'(n))} ) @3]

Sij(”)-H,‘j (n)
Vo j= 1...1,
M—

s.t. x(n) Z

m=0

n=2..N+M-1,

(m,n) ©s;;(n—m). 3)

Termination:
P(S*,Q",H'|A,n) =
Backtracking:

Yy (IN+M—1), gIN+M—1)=

q(n) = Wq(n+1)(n+ 1,

where I is the number of states of the HMM, g, i is the HMM tran-
sition probability from state i to state j, f; (j,-) is the HMM output
density of state j and fn( ) is the output density of the reverberation
model. The subscript ij in s;;(n), h;;(m,n) and H;;(n) indicates
that these vectors/matrices are based on the optimum partial state
sequence ij given by
Oii(n—M+1..n)=q"(n=M+1),...,q"(n—2),q(n—1) =i,q(n) =
from frame n — M + 1 to frame n w1th current state j and previous
state i.

The extension compared to the usual Viterbi algorithm consists
of the inner optimization of equation (2). Applying the method of
Lagrange multipliers to the inner optimization problem

max {f; (s () fo (Hyy ()} s.t.G3)

s; j(n H,; j
yields a two-step closed-form solution. For simplification, we
demonstrate this solution using an example with very short rever-
beration. Assume the matrix of the reverberation model consists of
only M = 3 columns corresponding to a length of the room impulse
response of 1-frame length + 2 - frame shift. Then the constraint
equation can be written as

x(n) =h;;(0,n) ©s;;(n—0)+h;;(1,n) ©s;;(n—1)+h;; (2 n) ©s;;(n—2)

where the underlined vectors are unknowns following a Gaus-
sian distribution with diagonal covariance matrix and the
overlined vectors are known from previous steps of the algorithm.
Now we approximate the generally non-Gaussian random vector
%,(0,n) = h;;(0,n) ©s;;(n—0) resulting from the element-wise

product of the two Gaussian random vectors h;;(0,n) and's;;(n —0)

by a Gaussian random vector x;(0,n) with the same mean and vari-

ance as X;(0,n). Assuming statistical independence of all vector
elements s;(I,n—0) VI =1...L, we obtain for the mean vector of

x;(0,n)

" (0) = Ms,,(1-0) © M (0.0)

and for the variance vector
oy %, (00) = "h (On)OG = o)+0h (071)9’” S 0)+°' S o)®mh (0.n) 2
where the squaring operation denotes element-wise squaring. Thus,
the constraint can be rewritten as

x(n) =x;(0,n) +h;;(1,n) ©s;;(n—1) +h;;(2,n) ©s;;(n - 2) .
Introducing the simplified notation

x=x%y+h, ©5/+h,05,, “4)

we obtain the following two-step solution of the constrained prob-
lem.

First step: Find %, h; and h,.
Applying the method of Lagrange multipliers to

max { fio (%) f (By) - fi (hy)}

%g,hy b,
where fx () is the L-dimensional Gaussian probability density
of x), we obtain the following solution for x,,, h; and h,

s.t. (4), (5)

stooy, +s300h,
X, = Dm.
0 oy, +sic 0‘2 +sZ”\6- R

2
[o2
X0 @(xfs]f-)mh —s,Omy, )
2 2 502 2 > o2 = 2 ’
Gx0+Slth] +52V°'h2 1 2
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+
where the squaring and the division operation denote element-wise
squaring and element-wise division, respectively, and m, and 6121

1 1

denote the mean and the variance vector of h,, respectively, and
likewise for the other variables. Note that these solutions have an in-
tuitive interpretation. For example, the solution for h is a weighted
sum of the mean vector My, and a second term related to the con-

straint. If 6}21 is small compared to the other variances, the solution
1

is dominated by my, . If 6}21] is large compared to the other vari-
ances, the solution is dominated by the second term.

Second step: Find h and s, given x,.
Applying the method of Lagrange multipliers to

én.%x{fz(ﬁso)'f"(ho)}

subject to the constraint
X =ho©sy,

we obtain the following fourth-order equation to be fulfilled by the
desired vector h

oszo@hg—mho@crszo®h3+msoeoﬁ0®xo®h0—x3@oﬁo =0,

where the exponents denote element-wise powers. It can be shown,
that this equation has a pair of complex conjugate solutions, one
real-valued positive and one real-valued negative solution. As only
the real-valued positive solution achieves the maximization of the
desired probability, we obtain exactly one vector h;, and thus ex-
actly one vector s;).

Generalizing this two-step solution of the inner optimization
problem to arbitrary lengths M of the reverberation model is
straightforward and the corresponding general solutions for the first
step are given in Appendix A.

Note that the decoding of the combined acoustic model intro-
duced in this paper exhibits some similarities to the HMM decom-
position approach proposed in [10] for additive noise. Indeed, our
approach can be considered as a generalization of the HMM de-
composition for a convolutive combination of the model outputs
if the reverberation model is considered as a one-state HMM with
matrix-valued output. However, there is a decisive difference in
the evaluation of the output density of the combined model. The
HMM decomposition approach proposes to integrate over all possi-
ble combinations of the outputs of the individual models to calculate
the output probability of the combined feature vector. We propose
to search for the most likely combination to calculate the probability
of the combined feature vector. While both approaches are feasible
for simple combinations like addition, the method proposed here
provides significant computational savings for more complex com-
binations like convolution.

3. SIMULATIONS

To analyze the effectiveness of the proposed approach, simulations
of an isolated digit recognition task using melspec features are car-
ried out. The performance of the proposed approach is compared to
that of conventional HMM-based recognizers (using the same mel-
spec features) trained on clean and reverberant speech, respectively.

3.1 Experimental Setup

For the experiments, HTK [11] is used. The functionality of HTK
is extended so that the proposed algorithm can be simulated us-
ing HTK. To calculate the feature vectors from the speech signal
sampled at 20 kHz, the signal is decomposed into frames of length
25 ms with a frame shift of 10 ms. After applying a 1st-order pre-
emphasis (coefficient 0.97) and a Hamming window, the frames are
transformed to the frequency domain using a 512-point DFT. 24
melspec coefficients are calculated from the DFT coefficients. Only
static features and no A and AA coefficients are used.

For the training, 4579 connected digit utterances correspond-
ing to 1.5 hours of speech from the TI digits [12] training data are
used. The speech signals are normalized so that the average power
of each digit is equal across all digit strings. For the training with
reverberant speech, the data are convolved with measured room im-
pulse responses. Impulse responses from two different rooms are
used. Room A is a lab environment with a reverberation time of
Ty, = 300ms. Room B is a studio environment with a reverberation
time of Ty, = 700ms.

A 16-state left-to-right model without skips over states is
trained for each of the 11 digits ("0’-’9” and "oh’). Additionally,
a three-state silence model with a backward skip from state 3 to
state 1 is trained. The output densities are single Gaussians with
diagonal covariance matrix. All HMM:s are trained in the following
way: First, single Gaussian MFCC-based HMMs are trained by 10
iterations of Baum-Welch re-estimation. Then the melspec HMMs
are obtained from the MFCC HMMs by single pass retraining [13].
For the conventional HMM-based clean recognizer and for the pro-
posed approach, identical sets of HMMs are used. The HMM sets
of the conventional reverberant recognizers differ only with respect
to the training data. Two distinct sets of reverberant HMMs are
trained for room A and room B using data reverberated with RIRs
measured in the corresponding rooms.

For the recognition, the silence model is appended to each of the
11 digit models, so that the decoding is performed on 11 concate-
nated models. As test-data, 2439 single digits extracted from the
test utterances of the TI digits corpus are used. They are normal-
ized in the same way as the training data, so that each digit has the
same average power. The feature sequences of the clean test data
are calculated directly on the extracted and normalized digits. To
obtain the reverberant feature sequences, the normalized clean test
signals are convolved with room impulse responses from room A
and room B, respectively, before they are passed to the feature ex-
traction unit.

To train the reverberation model 1, for room A with length
M, = 20, 36 impulse responses measured in room A with differ-
ent loudspeaker and microphone positions with constant distance of
2.00 m are used. For the training of 7 with length My = 50, 18
impulse responses measured in room B with a loudspeaker micro-
phone distance of 4.12 m are used. For the artificial reverberation of
training data and for the training of the reverberation models, RIRs
different from the impulse responses used to generate the test data
(measured in the same room but at different microphone positions)
are used in order to maintain a strict separation of training and test
data.

3.2 Experimental Results

Table 1 compares the word error rates (WER) of the conventional
HMM-based recognizers to that of the proposed approach for the
isolated digit recognition task described above. The low recognition
rate for the clean conventional HMM-based recognizer with clean
test data results from using melspec features in connection with sin-
gle Gaussian output densities providing only a coarse approxima-
tion of the true densities. While the WER increase in room A com-
pared to clean speech is more than 22 % and more than 17 % for
the conventional systems trained on clean or reverberant speech, re-
spectively, the error rate of the proposed approach only increases
by less than 2 %. The advantage of the proposed approach be-
comes even more dominant for the more reverberant environment
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Test HMM-based | HMM-based | proposed
clean training | rev. training

clean data 14.79 % - -

rev. data - room A 37.06 % 3223 % 16.36 %

rev. data - room B 61.42 % 5531 % 23.45 %

Table 1: Comparison of word error rates of a conventional HMM-
based recognizer and of the proposed algorithm.

of room B. Here, the WER increases compared to the clean data
performance of the conventional HMM-based recognizers are about
47 % and 41 % for clean and reverberant training, respectively,
while the WER increase of the proposed approach is only about
9 %. These results confirm that the proposed approach achieves
much better recognition performance in reverberant environments
than conventional ASR systems, even if the latter are trained on re-
verberant data. However, the decoding complexity increases by a
multiplicative factor which is proportional to the length M of the
reverberation model. In our current implementation, this factor is in
the range of one thousand.

4. CONCLUSIONS AND FUTURE WORK

We proposed a novel method tailored to recognize speech in rever-
berant environments which is based on a combination of an HMM
and a reverberation model. The reverberant speech feature vec-
tors are assumed to result from a feature-domain convolution of the
HMM output and the output of the reverberation model. For speech
recognition, an extended version of the well-known Viterbi algo-
rithm is used to decode the unknown utterances. Simulations of iso-
lated digit recognition in reverberant environments have shown that,
at the cost of an increased decoding complexity, the proposed algo-
rithm significantly improves the recognition rate compared to con-
ventional HMM-based recognizers trained on reverberant speech.
Future work will include generalization of the proposed approach
to connected word recognition and continuous speech recognition
and implementation of the method for more powerful speech fea-
tures like mel-frequency cepstral coefficients.

A. GENERAL SOLUTIONS OF THE INNER
OPTIMIZATION PROBLEM

If we apply the method of Lagrange multipliers to equation (5) for
an arbitrary length M of the reverberation model, we get the fol-
lowing general solutions for the first step of the inner optimization
problem

M-12 2
. - m=15m © Oh,, m
0 2 M-T12 52 %0
Oy T Yoo 8nO0g
o2 M1
0
+ s O x= Y saom
2 M-1g2 52 " hy, |
Gx() + m=1 Sm & Ghm m=1
2 M1 2 52
Oy T L 0zt S @Oy,
h _ mtm! om
m! - 2 M—1_2 ) i Y
O-x0 + X1 Sn © Ghm '
SZ/E)GEI M1
m - 1 o Z .
—_ "G O x—my — SpOm
2 M-1g2 g2 i >0 ="y |
Gxo +Zm:l S © Ghm Sy m=1
m#m!

where the squaring and the division operation denote element-wise
squaring and element-wise division, respectively.
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