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ABSTRACT 
This paper proposes a new variable forgetting factor QR-
based recursive least M-estimate (VFF-QRRLM) adaptive 
filtering algorithm for impulsive noise environment. The new 
algorithm is a QR-based implementation of the RLM algo-
rithm, which offers better numerical stability and a similar 
robustness to impulsive noise. A new VFF control scheme 
based on the approximated derivatives of the filter coeffi-
cients is also proposed to improve its tracking performance. 
Simulation results show that the proposed algorithm not 
only offers improved robustness in impulsive noise environ-
ment but also possesses fast transient converging and track-
ing behaviours.  

1. INTRODUCTION 

Adaptive filters are widely used in communications, control, 
and many other systems in which the statistical characteris-
tics of the signals to be filtered are either unknown a priori 
or, in some cases, slowly time varying [1]. These algorithms 
can broadly be classified into two main families: the least 
mean squares (LMS) algorithm and recursive least squares 
(RLS) algorithm. In many applications, the additive noise is 
impulsive in nature and not Gaussian-distributed. In this 
situation, the performance of conventional LS-based algo-
rithms will deteriorate significantly. A more robust adaptive 
filtering algorithm is the recursive least M-estimate (RLM) 
adaptive algorithm [2,3] which is based on the sum of 
weighted M-estimate error (SWME) cost function. It can be 
regarded as the generation of the conventional RLS algo-
rithm with an excellent ability to suppress impulses in the 
input and desired signals of the filter. The purpose of the 
instructions collected in this manuscript is to specify the 
format and style of admissible EUSIPCO 2006 papers and to 
facilitate paper submission and review. First of all, here is 
some general information about the paper preparation, sub-
mission, and review process. 

Like RLS-type algorithm, the RLM also suffers from 
problems such as numerical stability problem in finite word-
length implementation and slow convergence in sudden sys-
tem change due to the use of a constant forgetting factor. The 
former problem can be solved by seeking for other more sta-
ble implementations such as the QR-decomposition, whereas 
the latter one usually requires the use of adaptive forgetting 

factors. To address the latter, many algorithms have been 
introduced which include the data weighting approach [4], 
the self-perturbation RLS (SPRLS) [5] algorithm and the 
variable forgetting factor (VFF)-based, GN-VFF-RLS [6] 
and GVFF-RLS [7] algorithms. The VFF technique is very 
appealing for its simple implementation and good perform-
ance.  However, the VFF control design of present algo-
rithms mainly relies on the estimation error ([6] and [7] are 
respectively based on the error and the gradient of the MSE). 

In this paper, we proposed a new VFF control scheme 
based on the approximated derivatives of the filter coeffi-
cients. This approach was first employed by Hoshuyama et al 
to control the stepsize in their Proportionate Affine Projection 
Algorithm (GP-APA) [8]. The main idea is to measure the 
convergence behavior of the adaptive filter from the varia-
tions of the weight vector.  Near steady state, the weight vec-
tor exhibits much less variations and a smaller stepsize can 
be used.  Similarly, when the weight vector exhibits consid-
erable variation, a larger stepsize can be chosen.  We notice 
that this approach is also applicable to the RLS algorithm and 
a new VFF control scheme for the RLM is proposed in this 
paper.  Moreover, to improve the numerical stability of the 
RLM algorithm, a new QR-based implementation of the 
RLM algorithm is proposed. This resulting algorithm is 
called variable forgetting factor QR-based RLM (VFF-
QRRLM) algorithm. Simulation results show that the pro-
posed algorithm not only offers improved robustness in im-
pulsive noise environment but also possesses fast transient 
converging and tracking behaviours.    

This paper is organized as follows: the RLM algorithm 
is briefly reviewed in section 2. The proposed VFF-QRRLM 
algorithm is presented in section 3. Experimental results and 
comparisons are given in section 4. Finally, conclusions are 
drawn in section 5. 

2. THE RLM ALGORITHM 

Since the conventional RLS algorithm is based on the LS 
criterion, its performance will deteriorate considerably when 
the desired or the input signal is corrupted by impulsive 
noise. Nonlinear techniques are usually employed to reduce 
the hostile effects of impulsive noise on LS-based algo-
rithms. In [3], a robust adaptive transversal filtering algo-
rithm called RLM algorithm based on an M-estimate cost 
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function is developed. More specifically, in the system iden-
tification problem depicted in Fig. 1, )(nd  is the desired 
signal, [ ]TL nxnxnxn )()()()( 21 L=x  is the input vector 

(L is the filter length), [ ]TL nwnwnwn )()()()( 21 L=w  
is the adaptive filter weight  or coefficient vector and 

)()1()()( nnndne T xw −−=  is the a prior error signal. 
)(0 nη and )(nSη are the additive interferences and/or noises. 

Instead of the LS estimator, a new cost function, defined as 
the sum of exponentially weighted M-estimate errors 
(SWME), is proposed: 
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)(eρ  is a robust M-estimate function such as the Hampel’s 
three parts re-descending function shown in equation (1) and 
Fig. 2. 
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(1) 
It can be seen that )(eρ  is an even real-valued function and 
ξ , 1∆  and 2∆  are the threshold parameters used to control 
the degree of suppression of the outliers. The contribution of 
the error e to )(eρ  is reduced when its magnitude is in-
creased beyond these thresholds.  Therefore, the smaller the 
values of ξ , 1∆  and 2∆ , the greater the suppression will be of 
the outliers.  These threshold parameters are usually esti-
mated continuously, which will be discussed later. )(nJ ρ  is 
therefore capable of smoothing out momentary fluctuation 
caused by the impulsive noise.  By setting the first-order par-
tial derivatives of )(nJ ρ , with respect to )(nw , to zero, it 
was shown in [3] that optimal weight vector should satisfy 
the M-estimate normal equation:  

ρρρ PwR =*                                                                    (2) 
where 
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are the M-estimate autocorrelation matrix of )(nx  and the 
M-estimate cross-correlation vector of )(nd  and )(nx , re-
spectively, and eeqeee ⋅=∂∂= )(/)()(' ρρ . Considering 

ρR  and ρP will become smaller and smaller due to λ  when 
a series of impulses appear at )(nx or )(nd , a better choice 
for )(n

iλ  is therefore proposed as 
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Figure 1 – System identification structure 
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Figure 2 –The Hampel’s three parts re-descending M-estimate 
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where λt is a threshold that can be chosen according to the 
threshold parameters of ))(( ieρ or other useful measures. 
Accordingly, ρR and ρP can be updated as 
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(5) 
Thus, with a similar derivation of the conventional RLS 
algorithm, the RLM algorithm can be obtained as: 
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)]()1()()[()1()( nnndnnn T xwKww −−+−= .        (8) 

Eqns. (6)-(8) represent one step of the Newton method in 
solving the nonlinear equation in (2).  If more iteration is 
used, it becomes an iteratively re-weighted LS algorithm 
with higher arithmetic complexity.  Other algorithms can also 
be used.  The threshold parameters ξ , 1∆  and 2∆  can be 
determined by the method proposed in [3]. Here we refer the 
readers to this paper for the details and only summarize the 
main procedures into the following formulas.  

{ })1(,),()( 22 +−= we NnenenA L                        (9) 
))1/(51(483.11 −+= wNc                                          (10) 

))(()1()1(ˆ)(ˆ
1
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)(ˆ96.1 neδξ = , )(ˆ24.21 neδ∆ = , )(ˆ576.22 neδ∆ =     (12) 
where wN is the length of the estimation window, eλ  is a 
constant close to 1 and med(.) is the median operation. 
 

3. THE PROPOSED VFF-QRRLM ALGORITHM 

In order to derive the new VFF-QRRLM algorithm, we need 
to seek for the QR-based implementation of the RLM algo-
rithm as described by (6) ~ (12) and design a new VFF con-
trol scheme. The details are shown below: 
 

A. QR-BASED IMPLEMENTATION OF RLM ALGORITHM 
        The QR-based RLS algorithm, as summarized in Table I, 
is mathematically equivalent to but has higher numerical 
stability than the conventional RLS algorithm. Besides, it can 
be efficiently implemented using a systolic array involving 
only CORDIC processors [1].  If we modify (T-3) in Table 1 
as 
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where [ ]Tndnneqn )()())(()( Tx=′ψ , )(neλ and ))(( neq a
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Consequently, the back-substitution step is modified to 

)(ˆ)()(~ nnn LL dwR ′=′ .                                                  (15) 

       From (13) ~ (15) and the relationship between QRRLS 
and RLS algorithms, the following update formulas can be 
obtained:  

)()())(()1()()(~)(~)( nnneqnnnnn T
e

T
L xxRRRR L +−′=′′=′ ρρ λ

     (16) 

)()())(()1()()(ˆ)(~)( nndneqnnnnn eL
T

L xPdRP +−′=′′=′ ρρ λ      

(17) 
      Comparing (16) and (17) with (4) and (5), we can see the 
above QRRLM algorithm is mathematically equivalent to 
conventional RLM algorithm but it is more numerically sta-
ble for finite precision implementation.  
 

B. DESIGN OF NEW VFF CONTROL SCHEME 
       Unlike the conventional VFF schemes, the proposed 
VFF control scheme is based on the approximated deriva-
tives of the filter coefficients. This approach was firstly 
adopted in the GP-APA algorithm [8] and can be formulated 
as 
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(19) 

1. Given the augmented data matrix  
    ])1()1()[1()1( −−−=− nnnn dXD Λ                                        (T-1)    
  )1,,,,()( 1 λλλΛ L−= nndiagn , and its QRD at time (n-1): 
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where )1( −nQ and )1(~
−nLR are unitary and upper triangular 

matrices, respectively. 
2. (QRD) Form the new augmented data matrix 
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where [ ]Tndnn )()()( Tx=ψ .  Tnn )](,),1(),0([)( xxxX L= . Get the new 
QRD by Givens rotations or Householder reflections as 
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3.  (Back-solving) Solve the triangular system 
)(ˆ)()(~ nnn LL dwR = for the LS estimate )(nw at time n by back-

substitution: 
)()]([)( ,1, nrnrnw LLLLL += 1,,1),(/])()()([)( ,
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+=
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L

ij
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where jir ,  and 1, +Lir  are the corresponding elements in )(~ nLR  
and )(ˆ nLd . )(nwi

 is the i-th element of )(nw . 
Table 1– QR-RLS Algorithm 

 
where )(nwi  is the i-th filter tap and )(ˆ nci  is its approxi-
mated time derivative. η  is the forgetting factor for calculat-
ing the smoothed tap weight )(ˆ nwi . 1|||| ⋅  denotes the 1l  
norm of a vector.  The roles of )(ˆ nci ’s in the prototype algo-
rithm are two folds: First, in time-invariant channels with 
sparse impulse responses, they allow significant tap weights 
to be given a larger stepsize and vice versa. This results in a 
faster initial converging speed. Secondly, since )(ˆ nci  tends 
to reflect the time variations of the filter weights, it yields a 
faster tracking speed in slowly time-varying channels. We 
found that the value of 

1
)1(ˆ −nc  will decrease and converge 

gradually from its initial value to a very small value when the 
algorithm is about to converge to its steady state.  However, 
this value is rather unstable during tracking the impulse re-
sponse of time-varying channels. Therefore, we propose a 
measure to map the convergence status of the adaptive filter 
through 

1
)1(ˆ −nc to the expected variance of the VFF )(nλ . 

More precisely, we compute the absolute value of the ap-
proximate derivative of 

1
)1(ˆ −nc  as 

11
)1(ˆ)(ˆ)( −−= nnnGc cc                                      (20) 

and obtain a smoothed version of )(nGc , )(nGc , by averag-
ing it over a time window of length T. The approximate ini-
tial value of )(nGc  is obtained by averaging the first M data 
and it is denoted by 0cG . By normalizing )(nGc  with 0cG , 
we get )(nGN , which is a more stable convergence measure 
of the adaptive filter. Denote the lower and upper bounds of 
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)(nλ as Lλ and Uλ , we propose to update )(nλ  at each itera-
tion as        

))]((1[)( LUNL nGn λλλλ −−+= .                           (21) 
Accordingly, (3) is modified to 
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Hence, the new VFF QRRLM algorithm can be obtained by 
replacing formula (T-3), (T-4) in QR-RLS algorithm with 
(13) and (14) and including (18)~(22). The computational 
complexity of the proposed algorithm is thus similar to the 
RLM algorithm. It has an )( 2LO  complexity together with 
L+1 more multiplications in (13) and )log( ww NNO  opera-
tions for computing )(ˆ 2 neσ . Moreover, it needs 3L+3 extra 
additions for updating )(nλ  and a little initial computational 
cost for calculating )(nGN  from )(nGc . 
 

4. SIMULATION RESULTS 

We now evaluate the performance of the proposed algorithm 
using computer simulation of the system identification prob-
lem in impulsive noise environment (Fig. 1). The unknown 
system has 30 coefficients which are randomly generated 
and normalized to unit power. The input signal is an AR 
process with coefficients [1 -0.65 0.693 -0.22 0.309 -0.177].  
The signal-to-noise ratio at the system output is given 
by )/(10log10 22

0 gdSNR δδ= , where 2
0dδ  is the variance of 

the output of the unknown system to be identified. The inter-
ference ))(()(0 norn Sηη is chosen as  

)()()()()()(0 nnbnnnn wgimg ηηηηη +=+= , which is a con-

taminated Gaussian (CG) noise with )(ngη  and )(nwη  be-

ing i.i.d. zero mean Gaussian processes with variance 2
gδ  

and 2
wδ , respectively. )(nb  is an independent and identically 

distributed (i.i.d.) Bernoulli random process assuming a 
value of either 1 or 0 with occurrence probabilities 

rr pnbP == )1)((  and rr pnbP −== 1)0)(( .  The strength 
and frequency of the impulsive noise are specified by the 
ratio 22 / gwrim pr δδ= . The parameters in our experiment 
are: dBSNR 30= , 005.0=rp , and 100=imr . The threshold 
parametersξ , 1∆  and 2∆ are obtained according to (9)~(12). 
The forgetting factor eλ is set to 0.99, and the window 
length wN is 14. Five algorithms, the QRRLS, the RLM, the 
SPRLS, the GVFF RLS and the proposed VFF-QRRLM 
were compared in three experiments. For the VFF control 
scheme, 9999.0=η , T=M=20, 8.0=Lλ  and 99.0=Uλ ; 
For the SPRLS algorithm, 1=β  and 1=γ ; For the GVFF 
RLS algorithm, 3.0=α , 99.0=β  and 04.0=µ . These 
parameter settings were chosen so that the steady state MSE 
of all the algorithms is approximately the same. 50 Monte 
Carlo experiments were conducted to obtain the resultant 

curves. Experiment 1: Tracking sudden system change. The 
system parameters were switched to their reverse values at 
the 1500th iteration. It can be observed from Fig. 3 that both 
the initial converging speed and the tracking speed after 
sudden system change of the proposed algorithm is the fast-
est among all the algorithms. Experiment 2: Impulsive 
noise environment. For illustration purpose, the interference 
noise )(0 nη  is an additive Gaussian noise from time 

1=n to 600=n  and 2501 to 3000. From 601=n to 2500, 
the CG noise is applied. In order to visualize more clearly 
the effect of impulses in the desired signal, the locations of 
impulses are respectively fixed at 1500,800=n but the am-
plitudes of impulses are independent variables governed 
by )(nwη . Similarly, for the same reason one impulse is 
added to the input signal of the filter at 2200=n . From Fig. 
4 it can be seen the proposed algorithm and the RLM algo-
rithm have nearly the same satisfactory performance in sup-
pressing the impulses in both the desired and the input sig-
nals and outperform the other three algorithms. Experiment 
3: Tracking slowly varying system parameters. The slowly 
varying system model is defined as 

)()()()1( nvnwnwnw iiii ε+=+ , Li ,,2,1 L= , where ε  is 
a small constant equal to 0.01 and snvi )'( are a set of inde-
pendent Gaussian white noise sequences with unit variance. 
The performance index is the sum of squared coefficient 
error (MSD). Fig. 5 reveals that the VFF-QRRLM algorithm 
outperforms the other algorithms.  

5. CONCLUSION 

A new VFF-QRRLM adaptive filtering algorithm in impul-
sive noise environment is presented. This new algorithm is a 
QR-based implementation of the RLM algorithm, which is 
numerically more stable. A new VFF control scheme based 
on the approximated derivatives of the filter coefficients is 
also presented.  The improved tracking ability and robust-
ness to impulsive noise of the proposed algorithm is verified 
by computer simulation. 
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Figure 3 – (a) Example of sudden system change. (MSE results vs. 
time n) (b) VFF )(nλ vs. time n 

 
 

 
 (a) 

 
(b) 

Figure 4 – (a) Example of impulsive noise environment. (MSE re-
sults vs. time n) (b) VFF )(nλ vs. time n 
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Figure 5 – (a) Example of tracking slowly varying system pa-
rameters. (MSD results vs. time n) (b) VFF )(nλ vs. time n 
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