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ABSTRACT 
In this paper, we realize a comparative performance analy-
sis of nonparametric (permutation and rank) detectors 
against the parametric ones. The optimum permutation and 
rank tests are proposed for radar detection under K-
distributed clutter, having considered an ideal case of inde-
pendent and identically distributed (IID) clutter samples, 
and another more realistic case of spherically invariant 
random process (SIRP) clutter model. The detector per-
formance analysis was realized for nonfluctuating and 
Swerling II target models by Monte-Carlo simulations, and 
the results are shown in curves of detection probability ver-
sus signal-to-clutter ratio. 

1. INTRODUCTION AND PRELIMINARIES 

Permutation Tests (PT) were proposed firstly by R.A. Fisher 
in 1935 [1], under the name of randomization test [2]. Other 
equivalent names used in the statistical literature are Fisher's 
exact tests, re-randomization tests, conditional tests, and 
permutation tests. The rank tests [3-5] can be considered as a 
particular case of the family of permutation tests [6-7], be-
cause the theory of permutation tests applied to a sample 
vector is also applied to its rank vector, as is shown in [7]. 
Therefore, the optimum permutation test [6] is more power-
ful than the optimum rank test, although the former has 
much more computational complexity than the latter. In the 
past, some rank tests have been applied to detection [8]; 
nevertheless, as long as the authors know, permutation tests 
have seldom been applied to radar detection [9]. 

 A distribution-free statistic [3-7] over a family of dis-
tributions is a statistic whose distribution is independent of 
the particular distribution considered in such family. Note 
that a parametric family of distributions is defined by a finite 
number of parameters. On the contrary, a nonparametric 
family of distributions cannot be defined by a finite number 
of parameters (e. g. the family of all continuous and sym-
metric distributions). The importance of distribution-free 
statistics is apparent for constant false-alarm rate (CFAR) 
detectors, because if the test statistic is distribution-free un-
der hypothesis H0 (target absent), then the false-alarm prob-
ability is constant (e.g. Pfa=10-6) for any distribution of H0. 
Once the distribution-free statistic is defined, the following 

problem is to find an optimum test in the Neyman-Pearson 
sense. 
 We suppose that the signal comes from a two-
dimensional pulsed-radar system. In order to test hypothesis 
H0 (target absent) against hypothesis H1 (target present) for 
each azimuth in a specific range cell, we take M reference 
samples corresponding to the range cells surrounding the 
cell under test. Also, we consider a block of N pulses for 
each azimuth (corresponding to the number of pulses per 
antenna beamwidth), then for each ith-pulse we have the row 
vector of samples 

1 2( , , ... , , ), 1,2, ... ,i i i iM ix x x x i N= =x  (1) 
where the last component xi of vector xi is the sample of the 
range cell under test. Finally, we consider a non-coherent 
detection approach, i.e. we suppose that data are samples of 
the linear envelope (phase is discarded). 
 
1.1 IID Clutter Model 
In a first analysis, the two hypotheses H0 (target absent) and 
H1 (target present) are defined in terms of distribution func-
tions, as they were defined in [8], which are as follows for 
nonfluctuating and Swerling II target models 

0 1 2 0 0 0
1 1

: ( , , ... , ) ( ) (
N M

N i i
i j

)i ijH F H F x F x
= =

=∏ ∏X x x x  (2) 

1 1 2 1 1 0
1 1

: ( , , ... , ) ( ) ( )
N M

N i i
i j

i ijH F H F x
= =

=∏ ∏X x x x F x  (3) 

where 0 ( )iF x  and 1 ( )iF x  are the cumulative distribution 
functions of the sample xi under H0 and H1, respectively. 

Note that under H0, the components of the random vec-
tor 1 2( , , ... , ,i i i iM )iX X X X=X

, 1, 2,...,i N

 are independent and identi-
cally distributed (IID) for each pulse i  (i=1, 2, ..., N), i.e. H0 
of (2) is IID by blocks inside each random vector 

i =X ; then, the cumulative distribution function 

1 2 0( , ,..., )NF Hx x x

1 2( , , ... , , )i i i iM i

X  satisfies the property of invariance 
under the permutation of components in each vector 

x x x x=x , 1,i 2,..., N=  and we can define 
distribution-free statistics inside each block of M+1 compo-
nents, corresponding to vector xi. Under H1, only the refer-
ence samples 1 2, , ... ,i i iMX X

, 1, 2,..., ,i N
X  are IID. Also, vectors 

i =X  are independent each other. 
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1.2 SIRP Clutter Model 
The Spherically Invariant Random Process (SIRP) clutter 
model [10-12] for the range cell under test and a block of N 
pulses can be represented by the compound model: 

, where  are N-dimensional complex 
random column vectors, and Y  is a real random scalar (in-
dependent of ). Also,   is a com-
plex Gaussian random column vector, and the components 

, , are mutually independent if the radar 
system uses frequency agility. If target is present, we have 

Y= ⋅X W

iW 1, 2i =

 and X

W

N

)

W

W

..,

exp

T
1 2( , , ..., )NW W W=

, .

(X W Y= ⋅
Φ

B ⋅ jΦ+ , where  is the target 
return:  is uniformly distributed in [0

exp( )B j⋅ Φ
, 2 ),π  B is the ampli-

tude of the return signal (B is a constant for nonfluctuating 
target model and B is Rayleigh distributed for Swerling II 
target model). Note that we are referring to the non-coherent 
detection, and if there is only clutter then X W= Y⋅ , where 

 is a Rayleigh random variable and Y  is a positive real 
random scalar with a general probability density function.  
W

Under H0, if ,i iX W Y= ⋅  ,ij ijX W Y= ⋅

1, 2, ... ,i

  
and , then we can write , being 

, . If the probability 
density function of the random variable Y is denoted as 

, the two hypotheses are expressed by  

1, 2, ...,j =
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Although H0 in (4) is not IID, 1 2 0( , ,..., )NF HX x x x

1 2( , , ... , ,i i i iM

 ac-
complishes the property of invariance under component per-
mutations in each vector )ix x x=x x , 

, and we can define distribution-free statistics 
inside each block of M+1 components, corresponding to vec-
tor , in a similar way as it was done in the 
IID case. 

1, 2,...,i =

, 1i i =X

N

N, 2,...,

2. PERMUTATION AND RANK DETECTORS 

The application of the Neyman-Pearson lemma to hypotheses 
(2) and (3), considering the log-likelihood ratio test, leads us 
to the following optimum parametric detector 

1
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where T0 is the detector threshold,  and  are the 
pdf’s of the sample x

1 ( )if x 0 ( )if x
i under H1 and H0, respectively. Column 

vector  is composed of the N samples 
under test. Note that the reference samples x

T
1 2( , , ... , )Nx x x=x

ij, i=1, 2, ..., N;  
j=1, 2, ..., M,  do not appear in the test statistic (6). 
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Also, we define the following permutation statistic [9]  
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where  is defined in (6),  k1 2( , , ... , ) ,Nk k k=k
)

i=1,2, ..., 
M, M+1, i=1,2, ..., N, and T  is included in (7). (x

For a block of N pulses, we have  possible 
values of T

( 1)NM +
 given by (7), which are equally likely under 

hypothesis H0 defined in (2). Now, we order ( )T ⋅k  from its 
smallest value to its greatest value, as follows 
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Now, consider the threshold T0 in (6) as given by  

 )( )
K

⋅k  (9) 

where K is the number of T  greater than or equal to T( )⋅k 0, 
and it is easily obtained from (8) for low K-values. So the 
permutation detector is realized by 

(
1

0

( ) ( ))K

H
T T

H

> ⋅< kx                   (10) 

where  is the test statistic of the samples under test, 
given by (6), and also included in (7). We have designed and 
implemented a new permutation test algorithm for computing 
(10) that can be implemented in workstations or in personal 
computers for any K-value and real-time applications. 

The false-alarm probability (Pfa) of the permutation test 
(10) is given by 

( ){ }0( )
( 1)NK

KT H
M

⋅ =
+k       (11) 

The detection probability (Pd) of the permutation test 
(10) is given by 

}
( )

1

1 2 1 1 2

Pr ( ) ( )

( ) ( ) , ,..., ...

d K

N NK

P T T H

T T f H d d du

= ≥ ⋅

 = − ⋅ ∫ X

k

k

X

x x x x x x x

(12) 
where  u[ ]⋅  is the unit-step function.  

Note that the optimum statistic for the parametric detec-
tor is optimum also for the permutation detector, where we 
have considered “optimum” in the Neyman-Pearson sense. 
So, under K-distributed clutter, from [9] the clipping statistic 
is optimum for impulsive clutter (ν=0.5) and the linear (or 
quadratic) is optimum for Rayleigh clutter (ν=∞), where ν is 
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the clutter shape parameter. In [9], results of the comparison 
between parametric tests and permutation tests were shown 
and discussed in some details. 

Now, we summarize some theoretical results about the 
application of rank detectors to radar detection, more details 
are in [8]. We define the rank ri of the sample under test xi in 
the sample vector 1 2( , , ... , , )i i i iM ix x x x=x  as follows 

1
( ) , 0 , 1, 2, ... ,

M

i i ij i
j

r u x x r M i
=

= − ≤ ≤ =∑ N       (13) 

where is the unit-step function. ( )u ⋅

Under hypothesis H0, the rank probability is uniformly 
distributed, then the rank (or any rank statistic) is distribu-
tion-free (whenever IID conditions be satisfied) and any test 
based on ranks is nonparametric CFAR. Under hypothesis 
H1, the rank probability is given by [8] 

tion-free (whenever IID conditions be satisfied) and any test 
based on ranks is nonparametric CFAR. Under hypothesis 
H1, the rank probability is given by [8] 
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(14) 
where 0 ( )iF x  and 1 ( )iF x  are the distribution functions of the 
sample Xi under H0 and H1, respectively.  

Considering , the hypotheses in terms 
of rank probabilities are 

T
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where ( 1i iP R r H= )  is giving by (14). 
From hypotheses (15) and (16), we have the following 

optimum rank test  
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where T0 is the corresponding threshold. 

Finally, the suboptimum detector structure for Gaussian 
noise is also suboptimum under the SIRP clutter considered 
in (4) and (5). The proof is as follows: for the same false-
alarm probability (Pfa), both detectors satisfy (11) and the 
detection probability (Pd) given in (12) can be expressed by  

( )
0

( ) ( )d d YGaussP P y f y
∞

= ⋅∫ dy                  (18) 

where (Pd(y))Gauss is the detection probability (12) of the 
suboptimum detector for Gaussian noise with noise power y2; 
as (Pd(y))Gauss corresponds to the maximum values in the y-
interval of interest, then Pd in (18) corresponds also to the 

maximum. This fact was confirmed by the simulation results, 
as we shall see in the next Section. 

3. COMPUTER SIMULATION RESULTS 

In this Section, we present results of detection probability 
(Pd) versus signal-to-clutter ratio (SCR) for optimum non-
parametric (permutation and rank) detectors against optimum 
parametric detectors under K-distributed clutter and nonfluc-
tuating (NF) and Swerling II (SWII) target models. The clut-
ter shape parameter (ν) has been ν=0.5 for spiky clutter and 
ν=∞ for Rayleigh clutter. Also, optimum test statistics have 
been considered for each case. Some detector parameters are: 
the false-alarm probability Pfa=10-3, 10-6 and 10-8, the number 
of integrated pulses N = 8, 16 and 32, and the number of clut-
ter reference samples M=7 and 15. Also, we have considered 
two clutter models: an ideal case of independent and identi-
cally distributed (IID) clutter samples, and another more real-
istic case of spherically invariant random process (SIRP) 
clutter model. Detector thresholds for each Pfa were obtained 
by computation of formulas or by Importance Sampling 
Techniques. The performance analysis was realized by 
Monte Carlo simulations on a personal computer. 

Under IID case, Figures 1-3 show curves of Pd vs. SCR 
of optimal detectors: parametric, permutation and rank; the 
three cases in the same figure, in order to establish compari-
sons. In Figures 1 and 2, the parameters M=15 and Pfa=10-6 
are fixed. In Figure 3, N=16 and M=15 are fixed. 
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NF, IID, ν = 0.5 
M=15,  Pfa=10-6 
+   Parametric 
◊   Permutation 
○   Rank 

N=16

 Figure 1.  Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under nonfluctuating target model (NF) and spiky K-
distributed IID clutter (ν=0.5). Parameters: M=15; N=8, 16 and 32; 
Pfa=10-6. 

In Figures 1 and 2, we can see the NF case with ν=0.5 
(Figure 1) and ν=∞ (Figure 2). The best detector is the para-
metric one, followed by permutation and rank ones, respec-
tively. If we consider Pd=0.8, permutation is about 1dB from 
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parametric for N=8 (i. e. the loss L≈1dB); for N=16 and 32, 
L≈0.5dB. Also, if Pd=0.8, the rank has a loss L≈2dB for N=8, 
and L≈1dB for N=16 and 32. Also, from Figure 1 (spiky clut-
ter), we can see that a duplication in N (from N=8 to 16, and 
from 16 to 32) implies a gain of 4dB approximately; how-
ever, from Figure 2 (Rayleigh clutter) a duplication in N im-
plies a gain of 2dB approximately. 

Figure 2.  Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under nonfluctuating target model (NF) and IID Rayleigh 
clutter (ν= ∞). Parameters: M=15; N=8, 16 and 32; Pfa=10-6. 
 

Figure 3.   Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under Swerling II target model (SWII) and spiky K-
distributed IID clutter (ν=0.5). Parameters: M=15; N=8, 16 and 32; 
Pfa=10-6. Pfa=10-6. 

In Figure 3, we can see the SWII case. Similar tenden-
cies are observed in this case when compared with the NF 

case (Figure 1), but the SCR required in SWII case for the 
same Pd is greater than that SCR required in the NF case. For 
Pd≈0.8, the loss (L) of each detector with respect the opti-
mum parametric one is approximately: under spiky clutter 
(ν=0.5) with permutation detector: L≈2dB for N=8, and 
L≈0.5dB for N=16 and 32, with rank detector: L≈3dB for 
N=8, L≈1dB for N=16, and L≈0.5dB for N=32. 

In Figure 3, we can see the SWII case. Similar tenden-
cies are observed in this case when compared with the NF 

case (Figure 1), but the SCR required in SWII case for the 
same Pd is greater than that SCR required in the NF case. For 
Pd≈0.8, the loss (L) of each detector with respect the opti-
mum parametric one is approximately: under spiky clutter 
(ν=0.5) with permutation detector: L≈2dB for N=8, and 
L≈0.5dB for N=16 and 32, with rank detector: L≈3dB for 
N=8, L≈1dB for N=16, and L≈0.5dB for N=32. 

In Figure 4, we can see the NF case with ν=0.5, N=16, 
M=15, and Pfa=10-3, 10-6 and 10-8. The loss of each detector 
with respect to the optimum parametric detector is low sensi-
tive with respect to Pfa. On the other hand, the detectability 
loss (L) of each detector when Pfa changes from 10-3 to 10-6 is 
about 5dB, and from Pfa=10-6 to 10-8, L is about 2dB. For the 
SWII case, the detectability loss with respect to Pfa is similar 
to the NF case. 

In Figure 4, we can see the NF case with ν=0.5, N=16, 
M=15, and Pfa=10-3, 10-6 and 10-8. The loss of each detector 
with respect to the optimum parametric detector is low sensi-
tive with respect to Pfa. On the other hand, the detectability 
loss (L) of each detector when Pfa changes from 10-3 to 10-6 is 
about 5dB, and from Pfa=10-6 to 10-8, L is about 2dB. For the 
SWII case, the detectability loss with respect to Pfa is similar 
to the NF case. 
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Figure 4.   Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under nonfluctuating target model (NF) and spiky K-
distributed IID clutter (ν=0.5). Parameters: N=16; M=15; Pfa=10-3, 
10-6 and 10-8. 

Figure 4.   Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under nonfluctuating target model (NF) and spiky K-
distributed IID clutter (ν=0.5). Parameters: N=16; M=15; Pfa=10-3, 
10-6 and 10-8. 

Under SIRP case, Figures 5 and 6 show results of Pd vs. 
SCR for optimal detectors: parametric, permutation and rank, 
under spiky and Rayleigh clutter, all in the same Figure for 
easy comparisons. We use the following symbols: continuous 
lines for denoting SIRP (K-distributed) clutter with ν=0.5, 
discontinuous (dotted) lines for denoting Rayleigh clutter; 
(lines with +) for the optimal parametric detector (ideal-
CFAR detector [10,11]), (lines with ◊) for the optimal permu-
tation detector, and (lines with o) for the optimal rank detec-
tor. As it is expected, under the same conditions, the best 
detector is the parametric, followed by the permutation and, 
then, the rank. Under Rayleigh clutter, Pd-curves of detectors 
increase rapidly from Pd=0.1 to Pd=0.95 as SCR increases 
(moreover, Pd ≈ Pfa as SCR < -20 dB); on the other hand, 
under SIRP (K-distributed) spiky clutter, Pd-curves of detec-
tors increase slowly as SCR increases (now, Pd ≈ Pfa as SCR 
<  dB). Also, it can be observed on both Figures 
that the separation between two curves under spiky clutter is 

Under SIRP case, Figures 5 and 6 show results of P

1020 log ( )faP1020 log ( )faP

d vs. 
SCR for optimal detectors: parametric, permutation and rank, 
under spiky and Rayleigh clutter, all in the same Figure for 
easy comparisons. We use the following symbols: continuous 
lines for denoting SIRP (K-distributed) clutter with ν=0.5, 
discontinuous (dotted) lines for denoting Rayleigh clutter; 
(lines with +) for the optimal parametric detector (ideal-
CFAR detector [10,11]), (lines with ◊) for the optimal permu-
tation detector, and (lines with o) for the optimal rank detec-
tor. As it is expected, under the same conditions, the best 
detector is the parametric, followed by the permutation and, 
then, the rank. Under Rayleigh clutter, Pd-curves of detectors 
increase rapidly from Pd=0.1 to Pd=0.95 as SCR increases 
(moreover, Pd ≈ Pfa as SCR < -20 dB); on the other hand, 
under SIRP (K-distributed) spiky clutter, Pd-curves of detec-
tors increase slowly as SCR increases (now, Pd ≈ Pfa as SCR 
<  dB). Also, it can be observed on both Figures 
that the separation between two curves under spiky clutter is 
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approximately similar to the separation between the two cor-
responding curves under Rayleigh clutter. 

Figure 5.   Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under nonfluctuating target model (NF), and SIRP K-
distributed spiky clutter (ν=0.5, continuous lines) and Rayleigh 
clutter (ν= ∞, dotted lines). Parameters: M=15; N=8, 16 and 32; 
Pfa=10-6. 

 Figure 6.   Detection probability (Pd) versus Signal-to-Clutter Ratio 
(SCR) for optimal detectors: parametric (+), permutation (◊) and 
rank (○), under nonfluctuating target model (NF), and SIRP K-
distributed spiky clutter (ν=0.5, continuous lines) and Rayleigh 
clutter (ν= ∞, dotted lines). Parameters: N=16; M=7; Pfa=10-3, 10-6 
and 10-8. 

In Figure 5, we show curves of Pd vs. SCR of the opti-
mal detectors with the parameters M=15 and Pfa=10-6, and 
three N-values (8, 16 and 32) for easy comparisons. Note that 
the detectability gain of any detector from N =16 to N =32 is 

approximately 2dB (less than the 3dB of a coherent detector). 
In Figure 6, we show curves of Pd vs. SCR of the optimal 
detectors with the parameters N=16 and M=7, and three Pfa-
values (10-3, 10-6 and 10-8). Note that the detectability loss (L) 
of any detector from Pfa=10-3 to Pfa=10-6 is L ≈3dB, and from 
Pfa=10-6 to Pfa=10-8 is L ≈1dB. 
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4. CONCLUSIONS  

Nonparametric detectors maintain CFAR property under IID 
or SIRP clutter models, because the multivariate distribution 
of a sample block of these two clutter models are invariant 
under permutations of the clutter samples. Computer simula-
tion results are shown in curves of Pd vs. SCR under K-
distributed clutter and nonfluctuating and Swerling II target 
models, and the corresponding discussion was provided. 
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