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ABSTRACT
We investigate the association between constellation shaping
and bit-interleaved coded modulation with iterative decod-
ing (BICM-ID). To this end, we consider a technique which
consists of inserting shaping block codes between mapping
and channel coding functions in order to achieve constella-
tion shaping. By assuming the example of a 2-bit/s/Hz 16-
QAM BICM-ID, it is demonstrated using computer simu-
lations that this technique can improve the performance of
BICM-ID schemes by a few tenths of decibels.

1. INTRODUCTION

Recently, some methods for combining constellation shap-
ing and bit-interleaved turbo-coded modulation have been
proposed for the design of bandwidth- and power-efficient
communication systems over additive white Gaussian noise
(AWGN) channels [1], [2]. In this letter, we investigate
the application of constellation shaping to bit-interleaved
coded modulation with iterative decoding (BICM-ID) [3],
[4]. To this end, we consider a shaping technique which con-
sists of partitioning the basic constellation into several sub-
constellations so that the lower energy signals are transmit-
ted more frequently than their higher energy counterparts [5].
In practice, such technique can be implemented by insert-
ing shaping block codes between mapping and channel cod-
ing functions. At the receiver side, an iterative decoding al-
gorithm is used to exchange extrinsic information between
the channel decoder, shaping decoder, and demapper blocks.
Throughout this work, without loss of generality, we focus
on the design of a 2-bit/s/Hz BICM-ID system employing a
16-ary quadrature amplitude modulation (QAM) constella-
tion.

This letter is organized as follows: In Section 2, the struc-
tures of our BICM-ID transmitter and receiver are presented.
Computer simulation results are shown in Section 3. Finally,
conclusions are drawn in Section 4.

2. SYSTEM MODEL

2.1 Transmitter structure of BICM-ID using shaping
coding
Fig. 1 shows the transmitter structure of a 2-bit/s/Hz 16-
QAM BICM-ID scheme using shaping codes. A frame of
Nb information bits is first encoded by a rate-Rc convolu-
tional encoder. The resulting encoded sequence is divided
into four parallel binary vectors by a serial-to-parallel (S/P)
converter, which are then interleaved using a set of ran-
dom interleavers π j, j ∈ {1, 2, 3, 4}. The outputs of the first
two interleavers are broken into L successive K-bit vectors
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Figure 1: Structure of the 16-QAM BICM-ID transmitter.

mmm j, j ∈ {1, 2}. Each vector mmm j is fed into a binary shaping
encoder S-ENC j, j ∈ {1, 2}, which generates a correspond-
ing N-bit codeword ccc j. Both shaping encoders S-ENC j are
identical and their rate Rs is given by Rs = K/N (N > K). We
recall that shaping encoders are designed so that the proba-
bility of a zero in codewords ccc j is maximized [2], [5]. Each
sequence composed of L codewords ccc j, j ∈ {1, 2}, is then
randomly interleaved (πS j). For convenience, we can here-
after view the resulting sequence as a succession of L code-
words ĉ̂ĉc j, j ∈ {1, 2}.

The remaining streams available at the output of inter-
leavers π j, j ∈ {3, 4}, can also be seen as composed of L
successive N-bit codewords ĉ̂ĉc j, j ∈ {3, 4}. Finally, a vec-
tor of four bits (ĉi,1, ..., ĉi,4), where ĉi, j is the i-th bit in the
codeword ĉ̂ĉc j, j ∈ {1, 2, 3, 4}, is mapped onto a signal point
of 16-QAM constellation. The spectral efficiency, η , of the
system is given by

η = 2Rc(Rs +1) bits/s/Hz. (1)

The 16-QAM constellation is divided into three sub-
constellations Sx, x ∈ {1, 2, 3}, so that S1 contains the four
signal points with lowest energies, S2 includes the eight sig-
nal points with medium energies, and S3 is composed of the
four signal points with highest energies. Bits ĉi,1 and ĉi,2,
which are originally generated by the shaping encoders, are
used to select one of these sub-constellations as follows: If
(ĉi,1, ĉi,2) = (00), then S1 is selected, whereas S2 is cho-
sen whenever (ĉi,1, ĉi,2) = (01) or (10). At last, the case
(ĉi,1, ĉi,2) = (11) leads to the selection of S3. With such map-
ping procedure, we guarantee that signals with high energies
are transmitted less frequently than low-energy signals since
Pr{ĉi, j = 0} > Pr{ĉi, j = 1}, j ∈ {1, 2} [2], [5]. We can eas-
ily show that, when compared to 16-QAM with equiprobable
signaling, the energy saving Es, in decibels (dB), is given by

Es = 10log10

(

5
9−8P0

)

, (2)
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Figure 2: Different mappings for 16-QAM. (a) 16-QAM mapping required
for the BICM-ID system with constellation shaping. (b) Schreckenbach’s
mapping. (c) Modified Schreckenbach’s mappping.

where P0 is the average probability of a zero at the shaping
encoder output.

Fig. 2a shows the 16-QAM mapping required for our
system. Note that the notation ‘XX’ in this figure denotes
any pair of bits, i.e. ‘00’, ‘01’, ‘10’ or ‘11’. Therefore,
there is a very large number of suitable mappings for design-
ing our BICM-ID scheme with constellation shaping. In [6],
Schreckenbach proposed a 16-QAM mapping that optimizes
the error performance of BICM-ID at high signal-to-noise
ratio (SNR). Such mapping is indicated in Fig. 2b. From
an error performance viewpoint, it is obviously desirable to
employ a mapping which is as close to that given in Fig. 2b
as possible. We found that it is actually possible to obtain
a labelling compatible with Fig. 2a by slightly modifying
Schreckenbach’s mapping. The resulting mapping is shown
in Fig. 2c and is obtained by simply swapping labels ‘0000’
and ‘1100’, as well as labels ‘0011’ and ‘1111’ in Schreck-
enbach’s mapping.

2.2 Receiver structure of BICM-ID using shaping cod-
ing

The receiver structure of our BICM-ID system is shown in
Fig. 3. In order to optimize the error performance, the
demapper, shaping decoder and convolutional decoder ex-
change information in an iterative manner by employing soft-
input soft-output (SISO) modules [7]. For each transmitted
signal s, the corresponding received signal r is expressed as
r = s+n, where n is a Gaussian noise sample with zero mean
and variance σ 2. Based on sample r and the corresponding a
priori log-likelihood ratios (LLRs) Ld

a(ĉi, j), j ∈ {1, 2, 3, 4},
generated by both shaping and convolutional decoders, the
demapper calculates an extrinsic LLR Ld

e (ĉi, j) associated
with bit ĉi, j, j ∈ {1, 2, 3, 4}, by using well known expres-
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Figure 3: Structure of the 16-QAM BICM-ID receiver.

sions [3], [4].
The LLR Ld

e (ĉ̂ĉc j) of vector ĉ̂ĉc j, j ∈ {1, 2}, is de-interleaved
by π−1

S1 and π−1
S2 . The resulting LLR Ls

a(ccc j) is then used as
an a priori information by the shaping decoder. The purpose
of the SISO shaping decoder S-DEC j, j ∈ {1, 2}, is to gen-
erate both extrinsic LLRs Ls

e(ccc j) and Ls
e(mmm j) which are asso-

ciated with codewords ccc j and mmm j, respectively. By using the
maximum a posteriori (MAP) algorithm, the extrinsic LLR
Ls

e(m j,k),k ∈ {1, ...,K} corresponding to the k-th bit in mes-
sage mmm j can be computed as

Ls
e(m j,k) = ln

[

Pr{m j,k = 1, Ls
a(mmm j), Ls

a(ccc j)}

Pr{m j,k = 0, Ls
a(mmm j), Ls

a(ccc j)}

]

, (3)

where Ls
a(mmm j) represents the extrinsic LLR generated by the

convolutional decoder at the previous iteration. We could
show that (3) is actually equivalent to

Ls
e(m j,k)= ln
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(4)
where Ωt

k, t ∈{0, 1}, denotes the set of all messages mmm whose
k-th bit is equal to t. In this equation, tl ∈ {0, 1} is the value
of the l-th bit in the message mmm under consideration and tn ∈
{0, 1} is the value of the n-th bit in the codeword ccc associated
to this particular message. In (4), Ln represents the a priori
knowledge, regarding the n-th bit in codewords ccc j, available
before the first decoding iteration starts. It is computed as

Ln = ln
[

1−Pn

Pn

]

, (5)

where Pn designates the probability that the n-th bit in a code-
word ccc j is equal to zero. By using an expression very similar
to (4), it is possible to calculate LLRs Ls

e(c j,n),n ∈ {1, ...,N}.
The extrinsic LLRs Ls

e(ccc1) and Ls
e(ccc2) are further fed into the

demapper as an a priori information for the next iteration,
while Ls

e(mmm1), Ls
e(mmm2), Ld

e (ĉ̂ĉc3) and Ld
e (ĉ̂ĉc4) are processed by

the convolutional decoder in the same iteration.
Finally, the extrinsic LLRs generated by the convolu-

tional decoder are split into four parallel vectors and inter-
leaved via π j, j ∈ {1, 2, 3, 4}. The first two vectors Ls

a(mmm1)
and Ls

a(mmm2) are further fed into the shaping decoder for the
next iteration, while Ld

a(ĉ̂ĉc3) and Ld
a(ĉ̂ĉc4) together with Ld

a(ĉ̂ĉc1)
and Ld

a(ĉ̂ĉc2) are fed back to the demapper.



Rc Rs K N Es
(dB) P0

2/3 1/2
7 14 3.63 0.854
6 12 3.58 0.851
5 10 3.38 0.838

3/5 2/3 6 9 2.41 0.766
4 6 2.22 0.750

4/7 3/4 6 8 1.85 0.717
3 4 1.55 0.688

Table 1: Several possible configurations for the design of a 2-bit/s/Hz 16-
QAM BICM-ID scheme with shaping coding. For each configuration, the
energy saving and the corresponding value of P0 are indicated.

3. SIMULATION RESULTS

We now consider a 2-bit/s/Hz BICM-ID system employing a
16-QAM constellation. The error performance of this system
was evaluated using various low-complexity shaping codes
whose characteristics are indicated in Table 1 [2], [5]. Since
the computational complexity of the shaping decoding varies
exponentially with K (|Ω1

k |= |Ω0
k |= 2K−1 in (4)), we decided

in this letter to only consider short-length shaping codes for
which K ≤ 7.

The rate-Rc channel codes are obtained by puncturing
a 4-state rate-1/2 recursive and systematic convolutional
(RSC) code with generator polynomials (7, 5). The iterative
decoding at the receiver side is performed in 10 iterations,
and the Log-MAP algorithm is used for the decoding of the
convolutional code.

Computer simulations were performed by selecting the
shaping codes corresponding to the highest energy saving for
each configuration in Table 1. Fig. 4 to Fig. 6 illustrate the
bit error rate (BER) performance versus signal-to-noise ratio
Eb/N0, where Eb is the energy transmitted per information
bit and N0 is the one-sided noise power spectral density, ob-
tained with the 2-bit/s/Hz 16-QAM BICM-ID schemes using
frame sizes Nb = 2000, 6800 and 13400 bits, respectively.
For comparison sake, the performance of an equivalent 2-
bit/s/Hz 16-QAM BICM-ID system without shaping is also
plotted. It can be seen that the use of the shaping code results
in a significant performance improvement for both frame
sizes. For every frame size, we remark that the maximum
value of the shaping gain at BER = 10−3 is approximately
equal to 0.7 dB. This substantial gain is achieved using the
(K = 7, N = 14, Rc = 2/3) configuration. However, in this
case, one can notice that there is an error-floor effect occur-
ing at BER level below 10−3. We believe that this error floor
is due to the relatively poor error-correcting capabilities of a
punctured rate-2/3 4-state convolutional code. Nevertheless,
such performance can still be of interest in some applications
for which a BER of 10−3 is the target.

The error floor level can be reduced by decreasing the
channel code rate Rc, i.e. increasing the shaping code rate
Rs. For instance, it is seen from Fig. 5 that the error floor
only occurs below BER = 10−5 when using the (K = 6,N =
8,Rc = 4/7) configuration. However, we notice that de-
creasing the channel code rate Rc results in smaller shaping
gains at high BERs (≈ 10−3). There is therefore a compro-
mise between performance at high BERs and performance at
medium BERs. We observe that the best trade-off is achieved
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Figure 4: Performance comparison over Gaussian channel between several
2-bit/s/Hz 16-QAM BICM-ID scheme using convolutional coding with 10
iterations and frame sizes Nb = 2000 information bits per frame. Perfor-
mance of equivalent BICM-ID system without shaping is also shown.
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Figure 5: Performance comparison over Gaussian channel between several
2-bit/s/Hz 16-QAM BICM-ID scheme using convolutional coding with 10
iterations and frame sizes Nb = 6800 information bits per frame. Perfor-
mance of equivalent BICM-ID system without shaping is also shown.
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Figure 6: Performance comparison over Gaussian channel between several
2-bit/s/Hz 16-QAM BICM-ID scheme using convolutional coding with 10
iterations and frame sizes Nb = 13400 information bits per frame. Perfor-
mance of equivalent BICM-ID system without shaping is also shown.



with the (K = 6,N = 9,Rc = 3/5) configuration. Using this
particular configuration, we obtain shaping gains equal to
0.30dB, 0.35 dB and 0.30 dB at BER = 10−5, for frame sizes
of 2000, 6800 and 13400 bits, respectively.

It is interesting to compare our results with those
achieved using Schreckenbach’s mapping for a 16-QAM
BICM-ID scheme without constellation shaping [6]. Note
that, 6800 bits per frame used in our system is equivalent to
the interleaver size of 10000 bits considered in [6]. At BER
= 10−3, our scheme using the (K = 7, N = 14) configura-
tion outperforms this BICM-ID scheme by 1.1 dB, whereas
at BER = 10−5, our scheme with the (K = 6, N = 9) config-
uration is 0.75 dB better than this scheme.

4. CONCLUSION

In this letter, we investigated the gain which can be obtained
by applying constellation shaping to the design of BICM-
ID. We showed that the error performance of a 2-bit/s/Hz
16-QAM convolutional coding scheme can be improved by
0.7 dB at BER = 10−3, and 0.35 dB at BER = 10−5, when
employing carefully selected shaping codes.
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