14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

RADAR IMAGING VIA ADAPTIVE MIMO TECHNIQUES

Luzhou Xu, Jian Li

Dept. of Electrical and Computer Engineering,
P. O. Box 116130, University of Florida,
Gainesville, FL 32611, USA.

ABSTRACT

We investigate several adaptive techniques for a multiple-
input multiple-output (MIMO) radar system. By transmit-
ting independent waveforms via different antennas, the echoes
due to targets at different locations are linearly independent
of each other, which allows the direct application of many
adaptive techniques. We discuss several adaptive radar imag-
ing algorithms, which can provide excellent estimation ac-
curacy of both target locations and target amplitudes, and
high robustness to the array calibration errors. To reject the
false peaks due to the strong jammers, we also propose a
generalized likelihood ratio test (GLRT). As shown by the
numerical examples, the number of targets can be estimated
accurately by using GLRT, and an accurate description of
the target scenario can be obtained by combining the adap-
tive radar imaging algorithms and the GLRT technique.

1. INTRODUCTION

A multiple-input and multiple-output (MIMO) radar uses
multiple antennas to simultaneously transmit several (pos-
sibly linearly independent) waveforms and it also uses mul-
tiple antennas to receive the reflected signals (see, e.g., [1]
[2] [3] and the references therein). Many MIMO schemes
have been proposed to resist the target’s scintillations [1],
to generate a desired transmitting beam-pattern [2], or to
achieve a high-resolution spatial spectrum estimation [3].
We consider herein a new MIMO radar scheme that can
deal with multiple targets. Similar to some of the afore-
mentioned MIMO radar approaches, linearly independent
waveforms are transmitted simultaneously via multiple an-
tennas. Due to the different phase shifts associated with the
different propagation paths from the transmitting antennas
to targets, these independent waveforms are linearly com-
bined at the targets with different phase factors. As a re-
sult, the signal waveforms reflected from different targets
are linearly independent of each other, which allows for the
application of Capon and of other adaptive array algorithms.
We consider applying two well-known adaptive approaches,
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i.e., the Capon and APES (Amplitude and Phase Estima-
tion) [4] algorithms, to the proposed MIMO radar system
to estimate the target locations and the reflected signal am-
plitudes. Then a generalized likelihood ratio test (GLRT) is
derived, which, as shown via numerical examples, can be
used to determine the number of targets by separating jam-
mers from targets.

We also investigate robust adaptive methods in the pres-
ence of array calibration errors. It is well-known that the
performance of Capon degrades severely in the presence of
steering vector errors. This problem also affects APES and
other adaptive methods, but to a lesser extent. In the pres-
ence of array calibration errors, we suggest the use of the re-
cently proposed robust Capon beamformer (RCB) (see [5],
[6] and references therein) to process the MIMO radar data.
As shown in the numerical examples, when array calibra-
tion errors are present, RCB significantly outperforms the
aforementioned (non-robust) adaptive methods.

The remainder of this paper is organized as follows. In
Section 2, we describe our MIMO radar scheme and the as-
sociated data model. Several adaptive methods and a robust
adaptive methods are presented in Sections 3 and 4, respec-
tively. We provide several numerical examples in Section 5.
Finally, Section 6 contains our conclusions.

2. SIGNAL MODEL

Consider a MIMO narrowband radar system with N arbi-
trarily located transmitting antennas and M arbitrarily lo-
cated receiving antennas. The system simultaneously trans-
mits N linearly independent waveforms, denoted by s,, €
Ct*l (n =1, 2, --- N) with L being the snapshot num-
ber. Let 6 be the location parameter of a generic target, for
example, the direction of arrival (DOA) when the targets
are in the far field of the arrays, and let a;(6) be the corre-
sponding steering vector for the transmitting antenna array.
Then the waveform vector of the reflected signals from the
target at 6 is al (9)S with (-)7 denoting the transpose and
S = [s1s2 - sy|T. Note that a (9)S is a function of the
location parameter 6. Hence, the signals reflected from tar-
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gets at different locations are linearly independent of each
other. By assuming that the targets are located in the same
range bin, the reflected signals arrive at the receiving array
at about the same time and the arrival time is known.

The signal matrix at the output of the receiving array has
the form:

X = a,(0)p(0)al (6)S + Z, (1)

where the columns of X € CM*L are the received data
snapshots, a,.(6) € CM*1 is the steering vector of the re-
ceiving antenna array and 3(f) € C denotes the complex
amplitude of the reflected signal from 6, i.e., the “reflection
coefficient” of the focal point . The matrix Z € CM*L
denotes the residual term, which includes the unmodelled
noise, interferences from targets at locations other than 6,
and intentional or unintentional jamming. For notional sim-
plicity, we will not show explicitly the dependence of Z on
0.

The problem is to estimate 3(6) for each 6 of interest
from the observed data matrix X. The estimates of {3(6)}
can be used to form a spatial spectrum in the 1D case or a
radar image in the 2D case. We can then estimate the lo-
cations of the targets and their “reflection coefficients” by
searching for the peaks in the so-obtained spectrum (or im-
age).

We remark that we can first apply matched-filters to (1).
Then the data model in (1) becomes:

vy 2 lxgr - a,.(0)5(0)a

I T(0)Rss +ZSY, (2)

where Rgg = %SSH is the covariance matrix of the trans-
mitted waveforms. Note that (2) has the same form as (1).
Hence, the methods introduced below can also be applied to
Y.

3. ADAPTIVE APPROACHES IN THE ABSENCE
OF ARRAY CALIBRATION ERRORS

We assume below that the steering vectors are known pre-
cisely, and present adaptive methods.

3.1. Capon

The Capon beamformer can be formulated as follows:

minw?Rw subjectto wa,(0) =1, 3)
w

where () denotes the conjugate transpose and w € CM*1

is the weight vector used to achieve noise, interference and
jamming suppression while keeping the desired signal undis-
torted, and R is the sample covariance of the observed snap-

shots, i.e., R = TXXH,

Solving (3), we can readily obtain the solution to (3) as
follows: R
. R 'a, (0
Wcapon = A—()' (4)
af ()R 'a.(0)
Applying the LS method to the signal at the output of the
beamformer, i.e. wfp(mX yields the Capon estimate of 3(6):
. a’ () R1XSH a
B 0) = OR 0
(0)Rssa;(0)]

L{all(0)Ra,(0)][a]
where (-)* denotes the complex conjugate.

&)

3.2. APES
By following [7], the APES method can be formulated as:

£ (O)S|?

subjectto  wa,.(0) =1,

(6)
where w € C'M*1 is the weight vector. Intuitively, the goal
of (6) is to find a beamformer whose output is as close as
possible to a signal with the waveform given by a} (6)S.

Solving the optimization problem in (6) yields the APES
estimate of 3 as follows:

miy || w''X—5(6)a]

A all (0)Q XS a; ()
ees (0) = N , (@
) L i (0) 12, 0] T O Rssai @]
where
5 XS”ai(0)al (0)SXT ©
L?al (0)Rssa;(0)

3.3. Generalized Likelihood Ratio Test

In this subsection, we assume that the columns of the resid-
ual term Z in (1) are independently and identically distributed
circularly symmetric complex Gaussian random vectors with
zero-mean and unknown covariance matrix Q. We derive
the GLRT for each 0 of interest. For notational brevity, we
omit the argument 6 of p, a,., a; and (3 in this subsection.

Following [8] (see also [9]), we define the GLR as fol-
lows:

. maxq f(X|5=0,Q) T 9
p=1 maxg, q f(X|3,Q) | ’ ®

where
f(X]8.Q) = *M|Q|~* (10)
exp {—tr [Q (X — a,8a] S)(X — a,f3a] S)"]}

is the probability density function of the observed data ma-
trix X given the parameters 3 and Q, and tr(+) and |-| denote
the trace and determinant of a matrix, respectively. From
(9), we note that the value of the GLR, p, lies between 0
and 1. If there is a target at a 6 of interest, we usually have
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maxs, q f(X|3,Q) > maxq f(X|8=0,Q),ic.p~ 1;
otherwise p ~ 0.
Solving the optimization problems in (9) with respect to

Q yields
max f(X|3 =0,Q) = (re) EMIR[TE, D)

and
_ —LM
max f(X|3,Q) = (me)
] - (12
{min —(X —a,fal'S)(X — a,ﬂatTS)HH .
8 |L
Note that

‘%(X —a,fBal'S)(X — arﬂa;‘FS)H‘
=‘Q + (a/ Rssa;)
XSHa* XSHa H
(arﬁ_ TR t*)(a’ﬂ_ TR t*) ’
L(a; Rssay) L(a; Rssay)
Q|1+ (a Rssa;) Q!
XSHa XSHax H
(arﬁ - TAit*) (arﬁ - ﬁ) ‘
L(aj Rgsay) L(aj Rssay)
QI [1+ (] Rssay)

XSHar \H . xs"
(arﬁ—m) Q 1(%5-@)]

R TQXH R HAH-1
2[QI 1+ QT (1 %)sta:;],
L*(af Rssay) aflQ 'a,
(13)
where we have used the fact that I+ AB| = I+ BA|, and

the equality holds when 3 = Bm:s- Note that the right side
of the inequality in (13) can be simplified as follows:
al SXH
L*(af Rssay)
Q! (1- 5@ )xsta]
a,afQ~'\ XSHaral SX
- aﬁQ‘laT) L2(aTRgga}) ’
. a,afQ 'XSParal SX7
© *(afQ'a,)(af Rssa))
R ‘I B R‘laraf{Q_lXSHa?atTSXH ’
L2(al'Q 'a,)(a] Rssa;)
afIQ_l(R - Q)R_la,«
alQ-la, ]

(13) =IQI [1+

Q-+ (1

(14)

~R| [1 _

Hp—1
~ a 'R "a,

=[R| ———
alQ la,

where we have used (8) and the fact that [T+ AB| = |I +
BA|.
From (13) and (14), it follows that
1
rr}jin Z(X —a,fal'Ss)(X —a,pBal's)?
. afR!a,

=IR| HO—1gq .~
allQ-la,

15)

By using (11), (12), and (15) in (9), the GLR in (16)
follows:

PO =1 T 0)Q e, 0) (16

4. ADAPTIVE APPROACHES IN THE PRESENCE
OF ARRAY CALIBRATION ERRORS

The previous adaptive methods assume that the transmitting
and receiving arrays are perfectly calibrated, i.e., a;(#) and
a,(0) are accurately known as functions of §. However, in
practice, array calibration errors are often inevitable. The
presence of array calibration errors and the related small
snapshot number problem can degrade significantly the per-
formance of the adaptive methods discussed so far.

We consider the application of the robust Capon beam-
former (RCB) (see [5], [6] and references therein) to a MIMO
radar system that suffers from calibration errors. RCB al-
lows a,.(f) to lie in an uncertainty set. Without loss of
generality, we assume that a,.(6) belongs to an uncertainty
sphere:

| a-(0) —a,(6) [*< e (17

with both a,.(#), the nominal receiving array steering vector,
and e being given.

The RCB method is based on the following covariance
fitting formulation [5]:

max o>(f)
o2(0),a,(0)

subjectto R — o%(A)a,.(0)a’ (0) >0 (18)

T

I'a-(0) — 2, () [|°< e,

where 02(6) denotes the power of the signal of interest and
P > 0 means that P is Hermitian positive semi-definite. By
using the technique in [5], the optimization problem in (18)
can be simplified as:

min a ()R 'a,(6)
ar(0) 19)
subjectto || a,.(0) —a,(0) ||°< e

By using the Lagrange multiplier methodology [5], the so-
lution to (19) is found to be

a.(0) =a,(0) — I+ A(O)R]'a,(0). (20)
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The Lagrange multiplier A(f) > 0 in (20) is obtained as the
solution to the constraint equation

| [T+ AO)R] " a,(9) [*=e, Q1)

which can be solved efficiently by using the Newton method
since the left side of (21) is a monotonically decreasing
function of A(6) (see [5] for more details). Once the La-
grange multiplier \(6) is determined, &, () is obtained from
(20). To eliminate a scaling ambiguity (see [S]), we scale
a,() such that || 4,.(0) ||>= M. Replacing a,.(#) in (5) by
the scaled steering vector a,.(f) yields the RCB estimate of

B(0).
5. NUMERICAL EXAMPLES

Consider a MIMO radar system where a uniform linear ar-
ray with N = M = 10 antennas and half-wavelength spac-
ing between adjacent antennas is used both for transmitting
and for receiving. The transmitted waveforms s, (n =
1, 2, --- N) are orthogonal quadrature phase shift keyed
(QPSK) sequences, and hence we have Rgs =L

Consider a scenario in which K = 3 targets are located
at #; = —40°, 8, = —25°, and #3 = —10° with “reflection
coefficients” 3y = 4, B = 4, and 55 = 1, respectively.
There is a strong jammer at 0° with an unknown waveform
and with amplitude 1000, i.e., 60 dB above (35. The received
signal has L = 256 snapshots and is corrupted by a zero-
mean spatially colored Gaussian noise with an unknown co-
variance matrix. The (p, ¢)th element of the unknown noise
covariance matrix is gy 0.9lp—al i 252%

We first consider the case of no array calibration errors.
Let SNR = 10 dB. The moduli of the spatial spectral esti-
mates of 3(0), versus 6, obtained by using LS, Capon and
APES are given in Figs. 1(a), (b) and (c), respectively. We
show the true spatial spectrum via dashed lines in these fig-
ures. As seen in Fig. 1(a), the LS method suffers from
high sidelobes and low resolution. Due to the presence of
the strong jamming signal, the LS estimator fails to work
properly. Capon and APES possess great interference and
jamming suppression capabilities. The Capon method gives
very narrow peaks around the target locations. However,
the Capon amplitude estimates are biased downward. The

APES method gives more accurate amplitude estimates around

the target locations but its resolution is slightly worse than
that of Capon. Note that in Figs. 1(a)-1(c) a false peak oc-
curs at # = 0° due to the presence of the strong jammer.
Fig. 1 (d) gives the GLR as a function of the target loca-
tion parameter 6. As expected, we get high GLRs at the
target locations and low GLRs at other locations including
the jammer location. By comparing the GLR with a thresh-
old, the false peak due to the strong jammer can be readily
detected and rejected, and a correct estimate of the number
of the targets can be obtained.
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Fig. 1. Spatial spectral estimates and GLR in the absence of
array calibration errors. (a) LS, (b) Capon, (c) APES, and
(d) GLR.

Modulus of Complex Amplitude (d8)
Modulus of Complex Amplitude (dB)

Al

%o E E 0 20 W0
DOA (deg)

(a)

Modulus of Complex Amplitude (d8)

/] |
%

20 0 2
DOA (deg)

20 0 20
DOA (deg)

(©) (d)

Fig. 2. Spatial spectral estimates and GLR in the presence
of array calibration errors. (a) Capon, (b) APES, (c) RCB
with € = 0.1, and (d) GLR.
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Fig. 3. Refined spatial spectral estimate in the presence of
array calibration errors.

We next consider the case where array calibration errors
are present. To simulate the array calibration error, each ele-
ment of the steering vector a;(f) = a,.(), for each incident
signal, is perturbed with a zero-mean circularly symmetric
complex Gaussian random variable with variance 0.005 and
then scaled to have norm v/M. We let SNR = 30 dB. The
other simulation parameters are the same as those in Fig. 1.
For the sake of description convenience, the moduli of the
amplitude estimates are on a dB scale. As shown in Fig.
2(a), the Capon method fails to work properly in the pres-
ence of array calibration errors, as expected: its amplitude
estimates at the target locations are severely biased down-
ward (by more than 60 dB for some of them). Although
APES gives much better performance than Capon, its ampli-
tude estimates at the target locations are about 10 dB lower
than the true amplitudes. On the other hand, RCB provides
accurate estimates of the target amplitudes as well as target
locations, but their peaks are wider (and hence their resolu-
tion is poorer) compared to what is shown in Fig. 1(b), as
expected (robustness to array calibration errors inherently
reduces the resolution). Again, note that in Figs. 2(a)-2(c) a
false peak occurs at § = 0° due to the presence of the strong
jammer. Fig. 2(d) shows the GLR corresponding to RCB,
as a function of #, which is obtained by replacing a,.(f) in
(16) by a,.(0) obtained in Section 4. As we can see, high
GLRs is given at the target locations and a low GLR at the
jammer location. Based on the GLRs, we can again readily
and correctly estimate the number of targets to be 3. Plot-
ting the spatial spectral estimates in Fig. 2(c) only for the
angles at which the corresponding GLRs are above a given
threshold (say 0.8), we obtain the refined spatial spectral
estimates in Fig. 3. This refined spatial spectral estimate
provide an accurate description of the target scenario.

6. CONCLUSIONS

We have considered several adaptive techniques for a MIMO
radar system, where multiple antennas transmit linearly in-
dependent waveforms and multiple antennas receive the re-

flected signals. In the absence of array calibration errors, we
have considered Capon, APES and GLRT. Capon provides
high resolution, APES gives accurate amplitude estimates
at the target locations, while GLRT provides good jammer
resistant ability. In the presence of array calibration errors,
we have shown that the RCB approach can provide accurate
estimates of both target locations and target amplitudes.
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