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ABSTRACT
A likelihood ratio test has recently been developed for detection-
estimation in under-sampled scenarios where the number of train-
ing data T is less than the number of antenna elements M. This
test can be applied in a GLRT detection-estimation framework to
many problems not satisfactorily addressed by conventional tech-
niques. In particular, we consider under-sampled MUSIC “perfor-
mance breakdown” phenomenon for independent sources, and use
the under-sampled likelihood ratio to detect the presence of MUSIC
outliers.

1. INTRODUCTION

Recently, it has been demonstrated that the GLRT-based detection-
estimation approach may be successfully used for scenarios that are
poorly addressed by conventional detection-estimation techniques
[1], [2], [3]. Specifically, in [1], it was shown that the GLRT frame-
work is instrumental to overcome the well-known MUSIC-specific
“performance breakdown” phenomenon, where under certain con-
ditions MUSIC starts to generate severely erroneous direction of
arrival (DoA) estimates. In [4], a particular GLRT-based iterative
scheme was suggested to address circular, and in fact, arbitrary
antenna array geometries to provide MUSIC-specific performance
breakdown “prediction and cure” of such DoA “outliers” [5],[6],[7].
With all these prior developments, the training sample volume T
was considered to exceed the dimension M of the adaptive filter (an-
tenna array) so that conventional (non-degenerate) ML estimates of
the covariance matrix exists.

Yet in many practical applications the number of independent
identically distributed (i.i.d) training samples need not approach
this conventional (“Wishart” [8]) training condition (T > M). One
of the well-known families of this kind is the one with low signal
subspace dimension, where the number m of the covariance matrix
eigenvalues much greater than the minimal eigenvalue (equal to am-
bient white noise power) is small relative to the matrix dimension
M (m < M). In this general case an admissible covariance matrix
could be introduced in the form

R = σ
2
0 IM +RS; RS = UmΛ0U

H
m ; Λ0 = Λm−σ

2
0 Im, (1)

where Um ∈ CM×m and Λm ∈ Rm×m
+ are the (M×m)-variate and

(m×m)-variate matrices of “signal subspace” eigenvectors and (pos-
itive) eigenvalues respectively. For localization of the “signal sub-
space” of such a “low rank” covariance matrix, the sample support
(i.e. the number of independent identically distributed training sam-
ples) need only equal or be greater than m rather than M.

While DOA estimation techniques exist for under-sampled
(T < M) training conditions, the modern GLRT-based detection-
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estimation techniques do not embrace this scenario, mainly because
proper likelihood ratios have not been yet introduced.

In [9] we have suggested an LR for under-sampled (T < M)
scenarios that has all the required properties for use in a GLRT
framework. Formulation of that LR is briefly revisited in Section
2 below. In section 3, we utilize the undersampled LR in a “predic-
tion and cure” methodology in the presence of MUSIC performance
breakdown. And in section 4, we provide simulation results for a
particular MUSIC performance breakdown example.

2. LIKELIHOOD RATIO FOR UNDER-SAMPLED
GAUSSIAN SCENARIO FOR GLRT-BASED

DETECTION-ESTIMATION

The central idea of the suggested [1],[2],[3],[4] GLRT-based
detection-estimation approach introduced for “properly” sampled
(T > M) training conditions is based on the property of the likeli-
hood function for the stochastic complex Gaussian model.

Indeed, let XT = [x1, . . . ,xT ], x j ∈ C N (0,R0). Then the like-
lihood function w.r.t. any R > 0 exists and is non-degenerate even
for under-sampled training conditions (T < M).

L (XT ,R) =
[

1
π detR

exp{−Tr [R-1R̂]}
]T

(2)

where

R̂ =
1
T

T

∑
j=1

x jxH
j . (3)

For “properly” sampled (T > M) conditions, when det R̂ > 0
(with probability one), instead of the likelihood function (2), one
can consider the likelihood ratio

LR(R) =
L (XT ,R)

maxR L (XT ,R)
(4)

where

max
R

L (XT ,R) =
[

exp(−M)
π det R̂

]T
, for R = R̂ (5)

and therefore

LR(R) =

[
detR-1R̂expM

exp{Tr
[
R-1R̂

]
}

]T

6 1 (6)

is equal to one for the generic ML covariance matrix estimate R̂.
The most important property of this LR(R) is that for the ac-

tual (true) covariance matrix R = R0, the p.d.f. of LR(R0) does not
depend on R0, since

LR(R0) =
[

detĈ0 expM
exp{Tr Ĉ0}

]T

(7)
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where Ĉ0 = R
− 1

2
0 R̂R

− 1
2

0 , and for T > M, Ĉ0 ∼ C W (T > M,M, IM),
i.e. Ĉ is described by the scenario-free complex Wishart distribu-
tion, fully specified by the parameters M and T [10].

Quite a straight-forward observation

max
R∈R

LR(R) > LR(R0), R0 ∈R, (8)

where R is the admissible set of covariance matrices that, obvi-
ously, includes R0, along with the scenario-free property for the
p.d.f. for LR(R0), form the basis of the introduced [1],[2] GLRT-
based detection-estimation scheme. This means that the GLRT-
based scheme finds solutions that are statistically as “likely” as
the true covariance matrix R0, without any a priori or clairvoyant
knowledge of that true solution.

For T < M, det R̂ = 0 and the LR(R) can no longer be con-
structed as in (6). Therefore, in order to expand GLRT-based
detection-estimation methodology over the undersampled (T < M)
scenario, in [9] we had to develop an LRu(R) that meets the follow-
ing conditions:

a) Normalization condition:

0 < LRu(R) 6 1 (9)

b) Transition behavior: LRu(R) should be an “analytic exten-
sion” of the LR(R) (6), i.e.

LRu(R) = LR(R) for T > M (10)

c) Invariance property:

p.d. f [LRu(R0)] = f (M,T ). (11)

Such a LRu(R) that meets the above requirements was derived
in [9], based on the observation that rank-m “signal-subspace” ma-
trix RS in the most general case is fully specified by its first m rows
(columns), which means that the number of real-valued degrees of
freedom (rDOF) required for exhaustive description of R in (1) is

rDOF(R̂) = 1+2Mm−m2. (12)

On the other hand, for T < M, the sample covariance matrix R̂ in
(3) is fully specified by its first T columns (rows), which means

rDOF(R̂) = 2MT −T 2 (13)

Therefore, for T > m, functionally independent entries in R̂ can
serve as sufficient statistics for estimation of the “low-rank” covari-
ance matrix R in (1), and the minimum number of such elements is
specified by (12). In [9], we proposed to consider for m < T < M a
(2T −1) wide band of the matrix R̂:

Ω
R̂ :

[
r̂i j

]
|i− j|6 T −1; R̂ =

[
r̂i j

]
i, j = 1, . . .M. (14)

Note that the number of real-valued degrees of freedom for this
band is equal to

DOF(R̂B(T )) = 2MT −T 2− (M−T ) (15)

and is only (M−T ) degrees short from the (2MT −T 2) degrees of
freedom in R̂.

Specifically, we suggest to consider the (2T −1)-wide band of
the “pre-whitened” matrix Ĉ = R−

1
2 R̂R−

1
2 , where R is a p.d. Her-

mitian covariance matrix model. Since this band does not uniquely
specify the entire matrix Ĉ (rank Ĉ = T ), a number of completions
of the band [ĉi j], |i− j|6 T −1 exist (including the original matrix
Ĉ). We will use the completion Ĉ(p) with the maximal (non-zero)

determinant, specified by the Dym-Gohberg band-extension method
[11], [12].

In [12],[13] it was proven that amongst all band extensions, the
Dym-Gohberg extension has the maximal determinant, given by

det[Ĉ(p)]-1 =
M

∏
q=1

eT
q Ĉ-1

q eq (16)

where eq is a column vector of length M with a single unity entry at
position q and Ĉq is the (L(q)− q + 1)× (L(q)− q + 1) Hermitian
central block matrix in Ĉ with

Ĉq =

 ĉq,q . . . ĉq,L(q)
...

...
ĉL(q),q . . . ĉL(q),L(q)

 (17)

for q = 1, . . . ,M, p 6 T −1, and L(q) = min{M,q+ p}.
The Dym-Gohberg band extension method, applied to the rank-

deficient sample matrix Ĉ, transforms this matrix into a positive
definite Hermitian matrix Ĉ(p) with exactly the same elements as
the sample matrix Ĉ within the (2p+1)-wide diagonal band.

Moreover, this p.d. matrix Ĉ(p) is uniquely specified by all dif-
ferent (p+1)-variate central block matrices in Ĉ, and the only nec-
essary and sufficient condition for such transformations to exist, is
the positive definiteness of all (p + 1)-variate submatrices Ĉq in Ĉ.
Let m < p 6 T − 1, when we have DOF(RS) < DOF(Ĉ(p)). For
this reason, we introduce the following likelihood ratio Λ

(p)
0 (R) for

our under-sampled scenario:

Λ
(p)
0 (R) =

[
det[(R−

1
2 R̂R−

1
2 )(p)]expM

exp{Tr R̂R-1}

] 1
M

6 1 (18)

since Tr R̂R-1 = Tr [(R−
1
2 R̂R−

1
2 )(p)]. Here (R−

1
2 R̂R−

1
2 )(p) = Ĉ(p) is

the Dym-Gohberg p-band transformation of the matrix Ĉ. Note that
in fact, Λ

(p)
0 (R) calculation does not require actual reconstruction

of the Dym-Gohberg extension, since it’s determinant is explicitly
calculated via block-matrix Ĉq in (16). In this regard, this likelihood
ratio may be treated as a test on E {Ĉq} = ILq−q+1, simultaneously
for all q, which for m < p is consistent with the original testing
problem E {Ĉ}= IM .

For R = R0 we get Ĉ = Ĉ0, where Ĉ0 ∼A C W (T < M,M, IM),
i.e. Ĉ0 is now described by the scenario-free anti-Wishart complex
distribution, specified by T and M only [8]. Therefore, the p.d.f. for
the Λ

(p)
0 (R0) does not depend on scenario, and must be specified

by the parameters M, T and p only. Indeed, according to Theorem
2 in [9], for the actual (true) covariance matrix R0, the LR (18)
is a random value that is statistically equivalent to the following
representation:

Λ
(p)
0 (R0) = exp1

[
M

∏
q=1

Ωqϕq

] 1
M

(19)

ϕq ∼
ϕ

(T−ν−1)
q (1−ϕq)(ν−1)

B[ν ,T −ν ]
, 1 6 ν ≡ L(q)−q < p

L(q) = min{M,q+ p}

Ωq ∼
Cqq

T
exp

[
−

Cqq

T

]
Cqq ∼

CT−1
qq

Γ(T ) exp(−Cqq)

where ϕq and Ωq are independent and B[ν ,T −ν ] and Γ(T ) are the
incomplete beta and gamma functions, respectively. The p.d.f. for

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Λ
(p)
0 (R0) is therefore independent on scenario, and is fully specified

by M,T , and p.
Now the GLRT-based adaptive detection-estimation framework

has been made available to embrace “difficult” under-sampled sce-
narios and in what follows we illustrate its efficiency in an important
example.

3. “UNDER-SAMPLED” PERFORMANCE BREAKDOWN
“PREDICTION AND CURE” FOR SUBSPACE-BASED

DETECTION-ESTIMATION TECHNIQUES

Let us consider the M-element antenna array, designed to resolve
up to mmax < M sources, with the training support of T training
samples XT = [x1, . . . ,xT ] (i.e. mmax < T < M).

According to the GLRT detection-estimation methodology, for
µ = 0,1, . . . ,mmax we have to generate under-sampled maximum
likelihood (USML) models R̂µ :

R̂µ = σ̂
2
0 I +Sµ (θ̂µ )BµSµ (θ̂µ ) (20)

where
R̂µ = argmax

Rµ

Λ
(p)
0 (Rµ ); mmax < p < T (21)

and the smallest µ where Λ
(p)
0 (Rµ ) exceeds the pre-calculated

threshold ϑFA, is treated as the estimate m̂ for the number of sources
m:

m̂ = argmin
µ

Λ
(p)
0 (R̂µ ) > ϑFA (22)

Here Sµ (θ µ ) is the [M× µ]-variate antenna “manifold” ma-
trix, uniquely specified by a set of µ parameters (DOA’s) θµ =
[θ 1, . . . ,θ µ ], Bµ is the (µ×µ)-variate Hermitian non-negative def-
inite (n.n.d.) inter-source covariance matrix, and σ2

0 is the additive
white noise power.

Since
max
µ>m

Λ
(p)
0 (Rµ ) > Λ

(p)
0 (R0), (23)

the scenario-free p.d.f. for Λ
(p)
0 (R0) could be used to calculate the

threshold ϑFA (22) for the lower bound of the given probability of
false alarm PFA. ∫ 1

ϑFA

f
[
Λ

(p)
0 (R0)

]
dΛ

(p)
0 = PFA (24)

An analytic expression for this p.d.f could be given, but it is cum-
bersome to calculate and as an alternative, direct Monte-Carlo sim-
ulations of (19) may be employed for a given M, T and p to pre-
calculate the ϑFA.

Depending on the problem at hand, this quite generic GLRT-
based detection-estimation framework could be now adopted for
under-sampled scenarios, with appropriate techniques used for LR
maximization in (21). Specifically, it now can be used for subspace-
specific “performance breakdown” “prediction and cure” in a sim-
ilar way to the method suggested in [4],[14] for conventional (T >
M) training conditions.

According to this methodology, the entire procedure consists of
the following five steps.
Step 1 “Breakdown Prediction”.

The covariance matrix model RMν
m̂ conventionally generated by,

say, the Wax-Kailath detection algorithm, followed by MUSIC,
is tested by the inequality (22). If the threshold in (22) is ex-
ceeded, then the solution RMν

m̂ is accepted in terms of the LR
being statistically as good as the true parameters that specify
the covariance matrix R0. On the other hand, the presence of
MUSIC-specific outliers are expected to be “predicted” when
the respective model do not reach the threshold.

Step 2 “Local refinement”.
If MUSIC-generated estimates are within a convex proximity to
the “proper” solution, local optimization by the Gauss-Newton
or Neder-Mead (for example) algorithm can deliver a solution.
Otherwise, when a severe outlier is present within the DOA set
{θ m̂}, such local optimization fails.

Step 3 “Outlier identification”.
Dealing with identifiable scenarios, we have to assume that the
LR threshold is not achieved due to some missing DOA esti-
mate(s). Therefore, the source in the model (20) which can be
deleted from the model with the minimal degradation in LR, is
treated as an outlier.

Step 4 “Outlier replacement”.
Instead of the “outlier” excluded at step 3, we now search for
the source with DOA estimate that maximally contributes to the
LR. 1-D MUSIC type search for this maximum could be used.

Step 5 “Final refinement”.
Local optimization, as per step 2, is executed in the vicinity of
the new set of DOA’s.
If the original set includes more than a single outlier, and as a

result the threshold is not exceeded, the procedure is repeated until
the threshold is exceeded. However with at least probability PFA,
this procedure may not reach the threshold and must be terminated
at some stage.

In [1],[3],[4] this technique was illustrated for uniform linear
and circular antenna arrays under “conventional” training condi-
tions with independent Gaussian sources. In Section 4, we pro-
vide simulation results that illustrate efficiency of this approach for
under-sampled training conditions and both independent and coher-
ent Gaussian sources.

The introduced GLRT detection-estimation framework allows
introduction of “prediction and cure” for MUSIC-specific perfor-
mance breakdown conditions.

4. SIMULATION RESULTS

Let us consider a scenario with M=10 antenna elements in a uni-
form line array and digital receiver-per-element architecture. Figure
1 shows the mean results of likelihood ratio formation for various
levels of training data support. The three key properties of the sug-
gested under-sampled likelihood ratio (18) can be seen in Figure
1. The LR is normalised between 0 and 1, it transitions properly
from the under-sampled likelihood ratio to a standard likelihood ra-
tio at T = M, and the analytically derived LR mean (see [9] for a
derivation), which is by definition scenario-free, agrees with both
the clairvoyant solution and MUSIC-derived solution.

Figure 1: Theoretical and Observed LRs
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Figure 2: Observed Angle Errors of MUSIC DOAs

Figure 3: Pre-Calculable LR PDF Matches Clairvoyant R0

The level of training support is set to an under-sampled level
(T = 6) to determine whether the USML LR can be used to accu-
rately detect the presence of MUSIC outliers, as the first step in
a GLRT-based rectification methodology. For d/λ = 0.5, we con-
sider a three source scenarios with independent sources with an in-
put SNR of 20dB per source:

sin(θ S) = {−.40,0.0,0.06} (25)

To generate a “difficult” circumstance, we have selected the
third source separation to reside within the MUSIC performance
breakdown region. Specifically, for the selected scenario, MUSIC
provided 42.2% severely erroneous DOA estimates (“outliers”).
The distribution of the MUSIC generated outliers can be seen in
Figure 2. Based on this angular distribution, a value of ±2.0o was
used as an association window size with the true signal DOAs while
determining whether each trial containing an outlier.

Results of our GLRT-based scheme that adopts the under-
sampled LR (18), are shown in Figures 3 and 4 and are sum-
marised by Tables 1-3. Figure 3 show that the pre-calculated p.d.f
for Λ

(p)
0 (R0) (which is scenario-free) agrees well with the exhibited

clairvoyant R0 seen during the Monte-Carlo trials. Figure 4 show
that the p.d.f’s of the “outlier” and “non-outlier” p.d.f.s are well sep-
arated and therefore can be properly classified with a thresholding
step.

In Table 1, we adopted a threshold calculated for a PFA = 10−3,
to assess “practical” non-clairvoyant performance of our routine.
Let us emphasize that p = T − 1 means that only M=5 element

Figure 4: LR PDFs of Uncorrelated Signals Scenario

Figure 5: LR PDFs of Correlated Signals Scenario

antenna covariance array subsets are involved in model R̂(p) re-
construction, yet quite efficient performance is demonstrated here
without any diagonal loading or use of other a-priori information.

As previously suggested by the well separated p.d.f.s in Figure
4, Step 1 of Table 1 shows that around very few non-outlier trials
were misclassified (as expected based on the use of a PFA = 10−3

threshold). Subsequent steps in the GLRT “prediction and cure”
methodology show that virtually all MUSIC-specific “outliers” can
be rectified.

The introduced outlier rectification scheme may also be applied
for scenarios with fully correlated sources. There are no modifica-
tions to the p.d.f pre-calculation, since it is scenario-free. For uni-
form linear antenna arrays, “forward-backward” spatial smoothing
for each training sample is typically used to provide an Mα -variate
sample covariance matrix (Mα < (M −mmax/2)) this is used for
conventional detection-estimation [15]. In that case, dependence on
T is less critical and in most cases, under-sampled training condi-
tions (T < M or even T < mmax) are in use. Also, computationally,
the GLRT routines must be modified slightly to provide optimiza-
tion across a complex-valued (rank 1) inter-source covariance ma-
trix rather than a real, positive valued diagonal inter-source covari-
ance matrix. Results for a fully coherent 3 source scenario with the
same locations given in (25) are summarized by Figure 5 and Tables
2-3.

Figure 5 show that the p.d.f’s of the “outlier” and “non-outlier”
p.d.f.s overlap more than in the uncorrelated signal case and there-
fore are not as well classified with a thresholding step. The re-
sults for the fully coherent signal scenario show that improvement
can be ultimately achieved via the GLRT-based outlier rectification
scheme, but some trials with outliers result in a model LR which
exceeds the threshold significantly and becoming indistinguishable
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Table 1: “Practical Threshold” - Independent Signals
GLRT Step Outlier “Truth” Mean PFA = 10−3

Detected LR α = 0.065
1. Breakdown No 56.3% 0.2451 56.3%
Prediction Yes 43.7% 0.0015 43.7%
2. Local No 68.2% 0.2382 72.4%
Refinement Yes 31.8% 0.0218 27.6%
3/4. Outlier No 95.5% 0.2295 99.0%
Predict/Cure Yes 4.5% 0.1175 1.0%
4. Final No 95.5% 0.2297 99.2%
Refinement Yes 4.5% 0.1175 0.8%

in an LR sense from trials without outliers. This is an example of
the so-called “maximum-likelihood performance breakdown phe-
nomenon” [1]. Obviously, if a particular model Rµ is close enough
to such a ML breakdown condition, local refinement at Step 2 can
drive it above the threshold, despite an “outlier” being present in
Rµ . It is then excluded from further rectification since it is classi-
fied (incorrectly) as outlier-free. Therefore, only the “gap” between
MUSIC-specific and maximum likelihood performance breakdown
conditions may be rectified by the suggested GLRT-based tech-
nique. While significantly better performance in this case can be
achieved by avoiding the local LR optimization step (Step 2) prior
to “outlier prediction and cure” (see Table 3), the ML breakdown
condition still prevents complete rectification.

Table 2: “Practical Threshold” - Coherent Signals Scenario
GLRT Step Outlier “Truth” Mean PFA = 10−3

Detected LR α = 0.065
1. Breakdown No 55.5% 0.2294 61.8%
Prediction Yes 44.5% 0.0346 38.2%
2. Local No 60.9% 0.2302 86.6%
Refinement Yes 39.1% 0.1132 13.4%
3/4. Outlier No 62.7% 0.2280 98.6%
Predict/Cure Yes 37.3% 0.1321 1.4%
4. Final No 63.7% 0.2265 99.7%
Refinement Yes 36.3% 0.1347 0.3%

Table 3: No Local Refinement - Coherent Signal Scenario
GLRT Step Outlier “Truth” Mean PFA = 10−3

Detected LR α = 0.065
1. Breakdown No 55.5% 0.2294 61.8%
Prediction Yes 45.5% 0.0346 38.2%
3/4. Outlier No 93.6% 0.2268 100%
Predict/Cure Yes 6.4% 0.1464 0%
4. Final No 93.6% 0.2268 100%
Refinement Yes 6.4% 0.1464 0%

5. SUMMARY AND CONCLUSION

We have shown that the LR test for under-sampled conditions intro-
duced in [9] can be used to demonstrate significant improvement in
detection-estimation performance within a MUSIC-specific break-
down threshold area. Specifically, for scenarios with either indepen-
dent or fully coherent Gaussian sources, we demonstrated capabili-
ties of our GLRT-based detection-estimation rectification scheme to
recover the majority of severely erroneous solutions (outliers) pro-
duced by conventional MUSIC in ˜45% of trials in a particular sce-
nario. The previously introduced GLRT-based detection-estimation

methodology is now extended to embrace the practically important
class of under-sampled training conditions.
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