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ABSTRACT
Canal coding can not nowadays be by passed. In
order to decode the coded sequence, the receptor
has to find the beginning of the codewords. This
problem is usually solved by adding periodically
to the transmit sequence a frame synchronization
sequence. Of course the longer the sequence the
better the synchronization but the less the spectral
efficiency. We understand clearly the stakes of de-
veloping a blind technique that synchronizes before
decoding (at high bit error rate) without synchro-
nization sequence. In this article we propose a blind
method that allows us to synchronize a block code,
we show that it is specially well suited for the LDPC
codes and has for those particular code very con-
vincing performance.

1. INTRODUCTION AND NOTATION
Communication and information storage use more
and more numerical solutions. Those techniques
use a canal code more or less sophisticated. Many
works have been done in this field. The principle
consists in adding redundant bits to the information
bits. This controlled redundancy allows the recep-
tor to detect the presence of errors and eventually to
correct them.

Along the existing codes, we focus in this pa-
per on the block codes. They associate to an infor-
mation word of nb bits a code word of nc bits with
nc > nb. The more redundant bits we have, the more
powerful the code is. In order to decode, the recep-
tor needs to find the beginning of the codewords.
This operation is usually called frame synchroniza-
tion [1], [2], [3]. The goal of this paper is to present
a blind method that allows to synchronize the frame
without synchronization bits (blind approach). This
method has to work before decoding (at high Bit Er-
ror Rate). Developing blind methods has an impor-
tant economic stake and is a challenging scientific
problem.

1.1 Notation
A block encoder is defined by a full-rank genera-
tor matrix G that transforms each block of nb infor-
mation bits into nc encoded bits (nb < nc). Repre-
senting the ith information block and the ith encoded
block by vectors bi and yi, we have: yi = biG. yi is
called a codeword. The ratio r = nb/nc is called

the code rate. The nr = nc − nb redundant bits are
computed as the sum modulo 2 of some information
bits.

The receiver received the codeword eventually
corrupted with errors due to the propagation chan-
nel. Let denote by r the received codeword:

r = mc ⊕ e

where mc is the codeword, e an error vector of
length nc and ⊕ stands for the sum modulo 2. From
this observation, the receiver should be able to re-
store the nb information bits. The optimal decoding
from binary data consists in finding the code word
that minimizes the Hamming distance to the obser-
vation r.

To the generator matrix G corresponds a parity
check matrix H of size nrnc such that GHT = 0.
The decoding principle consists in computing the
syndrome s(r) of the observation:

s(r) = rHT = miGHT ⊕ eHT = eHT .

And for each syndrome, we associate an error word
privileging the low weight error word.

Until now, we implicitly assumed that the re-
ceptor knows the beginning of the code words. Un-
fortunately this is usually not the case. Let us de-
note by X the received sequence of Z. Because of
the propagation channel, X is a delayed replica of Z
(by t0 bits corresponding to the propagation delay)
that has been passed through a binary symmetric
channel. Let us denote pe the error probability of
the channel. Without loss of generality, we assume
that the restitution delay t0 is smaller than the size
nc of a codeword. The goal of frame synchroniza-
tion is to estimate t0.

2. PRINCIPLE OF OUR BLIND
SYNCHRONIZATION

The redundancy introduced by the code is used to
synchronize our receptor. Indeed for a noise free
channel, when we are synchronised, all syndromes
computed from blocks of size nc are equal to zero.
This is mostly not the case when we are not syn-
chronized. Our method is based on this obvious ob-
servation. Let’s Hd be an extracted sequence of size
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Knc from the received sequence X:

Hd =




x(d), . . . ,x(d +nc −1)

︸ ︷︷ ︸

B1

,x(d +nc), . . . ,

x(d +(K−1)nc), . . . ,x(d +Knc −1)
︸ ︷︷ ︸

BK






T

.

Hd can be divided into K blocks (Bi)k=1,...,K of size
nc. When d = t0, Hd has exactly K complete code-
words. From Hd , we define a vector of syndromes
Sd of size Knr.

Sd = [S(1)
d , . . . ,S(K)

d ]T

= [Sd(1), . . . ,Sd(Knr)]
T

where S(i)
d is the syndrome computed from the block

Bi of Hd and Sd(k) is the kth element of Sd.
Figure 1 represents three different sequences of

Hd : for d = 0, d = 1 and d = t0 where the size of
Hd is fixed to K = 3.

.

d = t0

d = 1

d = 0

S
(2)
0

B1 B2 B3

x(0) x(1) . . .

S
(3)
0

x(t0)

S
(1)
0

H0

S0 =

Syndrome computed from H1

S
(1)
1

B1 B2 B3

S
(3)
1S

(2)
1

x(0) x(1) . . . x(t0)

H1

S1 =

x(M)

Syndrome computed from Ht0

S
(1)
t0

B1 B2 B3

S
(2)
t0

S
(3)
t0

x(0) x(1) . . . x(t0)

Ht0

St0 =

Syndrome computed from H0

...
...

...

Received bits

. . .

. . . x(M)

. . . x(M)

mc,k mc,k+1 mc,k+2 . . . . . .

.

Figure 1: Blind synchronization principle

From Sd, we define two different functions, the
first one φ1(d) corresponds to the number of syn-
drome equal to zero in Sd :

φ1(d) = Card
{

i ∈ {1, . . . ,K}/S(i)
d = [0, . . . ,0]

}

.

We estimate the synchronized position as the one
that maximizes φ1(d). Notice that for a small win-
dow Hd , for example K = 1, and for cyclic codes
(like BCH), if we have a syndrome equal to zero at
position d, we have a probability of 0.5 to have a
syndrome null at position d + 1. Thus the cyclic
property of the code has dramatic influences on
our synchronization procedure. Nevertheless this
can be easily solved by interleaving the emitted se-
quence by an interleaver of the size of the synchro-
nization windows. Indeed the interleaver destroys
the cyclic property and our method has then much
better performance as shown in the simulation sec-
tion.

Unfortunately, this synchronization method
based on φ1 does not work for long code words.
In presence of errors, φ1(d) is a Bernoulli vari-
able with parameter p1 for the synchronized posi-
tion and p2 for the other positions. It is easily seen
that :

p1 = (1− pe)
nc +

2ni

∑
i=2

pdi
e (1− pe)

nc−di

with di the hamming distance between the emitted
code word and the ith code word. For p2 we have :
p2 = 2ni

2nc . Of course the performance of this method
depends on the BER and the length of a code word:
for a fix code rate, we have :

lim
nc→∞

p1 = lim
nc→∞

p2 = 0.

Which means that for long codewords we are not
able to dissociate the synchronized position from
the others.

Another way to take advantage of Sd is to com-
pute φ2(d) as the number of elements equal to zero
in the vector Sd :

φ2(d) =
K(nc−nb)

∑
k=1

Sd(k)

and to estimate the synchronized position as the one
that minimizes φ2

t̂0 = ArgMind=0,...,nc−1φ2(d).

2.1 property of φ2

For d 6= t0, assuming that the bits are uniformly dis-
tributed, we have:

P[Sd(k) = 1] =
1
2 for d 6= t0.

For d = t0, P[St0(k) = 1] depends on the number
of ”ones” in the column k of HT and of the BER.
Assuming that column k of the matrix HT has uk
”ones”, we have :

P[St0 (k) = 1] =
b

uk
2 c−1

∑
l=0

(
uk

2l +1

)

p2l+1
e (1− pe)

uk−2l−1.
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Figure 2 represents the evolution of P[St0(k) = 1]
versus u for different values of pe. The function
u → P[St0(k) = 1] tends to 1

2 when u grows. It
grows faster for bigger pe. Thus the synchroni-
sation procedure should be more efficient as soon
as the difference between (P[Sd(k) = 1])d 6=t0 and
P[St0(k) = 1] is big enough. This is the case for
LDPC codes [4] [5]. Note that this condition does
not depend on the size of the code word as this is
the case for the synchronisation procedure based on
the maximisation of φ1.
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Figure 2: P[St0(k) = 1] versus u for different values
of pe.

Nevertheless this difference between
{P[Sd(k) = 1]}d 6=t0 and P[St0(k) = 1] is not
enough to guarantee a good performance of the
synchronization procedure based on the minimiza-
tion of φ2. Indeed, to be relevant, the elements of
Sd have to be independent.

Figure 3 presents the probability that element k
and element l of a syndrome are independent. To
compute this probability, we assumed that all the
lines of H have the same number u of ”ones” and
that the position of the ”one” in the lines of H are
uniformly chosen. The smaller u, the more inde-
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Figure 3: Probability that element k and element l
of a syndrome are independent

pendent the elements of the syndrome. Once again
the LDPC codes are good candidates for our syn-
chronization procedure based on φ2.

Assuming that the element of the syndromes are
independent and that all lines of H have the same
number of ”ones”, then φ2(d) follows a Bernoulli
law of parameter 1

2 for d 6= t0 and of parameter
P[St0(k) = 1] for d = t0. Using this model, we may
choose a threshold in order to avoid an exhaustive
search on the position d. Synchronization position
is estimated as the first one that verifies φ2(d) < β .
This solution is suboptimal compared to the exhaus-
tive search but it has a lower computational cost.
Because of the lack of space, we won’t discuss any-
more on this subject.

3. SIMULATION
In this section, we illustrate the behavior and the
performance of our algorithm. First of all, we
consider the systematic (15,11,03) hamming block
code. Figure 4 represents the probability of frame
synchronization versus the size of the sliding syn-
chronization window for different values of pe.
These curves are obtained by 3000 Monte Carlo tri-
als where,sq for each trial, the coded sequence, the
errors and the propagation delay are chosen ran-
domly. For this simulation, the emitted coded se-
quence is not interleaved. Therefore the synchro-
nization mismatch is due to the cyclic property of
the code. Figure 5 is obtained for a coded sequence
interleaved by a pseudo random interleaver that has
a size equal to the size of the synchronization win-
dow. Performance is much better. However, the
Hamming (15,11,03) code has u = 8 ”ones” in
each line of H therefore the performance of the
method based on φ2 gives bad performance. As the
code word is small, the probability to have an error
in the code word is also small, therefore the syn-
chronization based on φ1 is good.
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Figure 4: Code (15,11) not interleaved

To illustrate the behavior of our method, we
tried another Hamming code: (15,07,05). This
code has a code rate inferior to the Hamming code:
(15,11,03), thus the syndrome is longer, this may
help the method based on φ2 as soon as the syn-
drome element are independent. This hamming
code has the property to have u = 4 or u = 6 in the
lines of H. As shown in section 2.1 this favours
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Figure 5: Code (15,11) interleaved

the synchronization procedure based on φ2. Simu-
lations confirm our claims (see fig. 5 and 6).
.
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Figure 6: Code (15,07) interleaved

At last, we compare the synchronization perfor-
mance for a long Hamming code (nc = 511) with
an equivalent LDPC code having 4 ”ones” on each
line of H. We mean by equivalent a LDPC code that
has the same code rate and the same length. Figure
7 presents the probability of synchronization versus
the BER of the channel for a sliding window of size
nc.
.
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Figure 7: Performance of synchronization for
LDPC code

3000 Monte Carlo Trials are run where for each
trial the coded sequence, the errors and the prop-
agation delay are chosen randomly. Our synchro-
nization scheme based on φ2 has very convincing

performance: for a BER of 10% we are able to syn-
chronize in 97,8% of the cases. Let’s have a look
at the distribution of the value of φ2(d). Figure 8
represents the histogram of φ2 for the synchronized
position and for a non synchronized position at a
BER of 10%. To minimize the computational cost
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Figure 8: Histogram of φ2(d) for d = t0 and d 6= t0
- BER:10%

of the synchronization procedure, we may compare
the value of φ2(d) and choose the synchronization
position as soon as φ2 is less than a fixed threshold.

4. CONCLUSION
We propose a blind synchronization procedure
adapted to block codes that has very convincing
performance for LDPC code. This method is sim-
ple and is working before decoding at high Bit Er-
ror Rate. It does not need any synchronization se-
quence which allows to increase the spectral effi-
ciency. Note that the existed synchronization se-
quence can be replaced by a more powerful code
(introducing more redundant bits) which may lead
to an increase of the performance of our synchro-
nization procedure.
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