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ABSTRACT

This paper presents the design of IIR (Infinite Impulse Re-
sponse) notch filters with desired magnitude characteristic,
which can be either maximally flat or equiripple. Butter-
worth polynomial, used for designing the allpass filter, will
result in a maximally flat magnitude. Similarly, an equiripple
characteristic is obtained by using Chebyshev I, Chebyshev
II and Elliptic polynomials. The parameters of the design are
notch frequency, rejection bandwidth and passbands ripple.

1. INTRODUCTION

Digital notch filters remove a single non-desired frequency
component from signal as for example unmodulated carrier
in communication systems or power line interference from a
sampled signal [1].

Figure 1 shows a general characteristic of a notch filter.
The frequency ω0 is the notch frequency, while A1p and A2p

are the passband droops for the first and the second passband,
respectively. The frequencies ω1p and ω2p define the rejec-
tion bandwidth B.
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Figure 1: Gain characteristic of a notch filter.

A stable analog notch filter of the second order can be
presented as, [2]

H(s) =
1

2
[1 + A(s)] , (1)

where A(s) is an analog allpass filter. Its phase response is
a decreasing function of Ω which goes from 0 to −2π for
0 ≤ Ω < ∞.

To design the corresponding digital IIR notch filter H(z),
we apply bilinear transformation [2].

It is possible to design real and complex IIR multiple
notch filters by changing the order of the corresponding all-
pass filter [3, 4]. The filter coefficients are obtained by solv-
ing a set of linear equations. The problem arises if the set of
linear equations is ill-conditioned.

To avoid this problem an alternative approach is proposed
in [5]. In this case, a high order allpass filter is formed as a
cascade of second order allpass sections.

In all mentioned cases, the resulting notch filters are not
maximally flat.

In the proposed design, the notch filters can be either
maximally flat or equiripple in one or both passbands.

Unlike notch filter (1), we express a stable notch filter
G1(s) as,

G1(s) =
1

2

[
A2

0(s)+ A2
1(s)

]
, (2)

where A0(s) and A2(s) are stable allpass filters.
Equation (2) can be rewritten as,

G1(s) =
1

2

[
1 + A2

G(s)
]

A2
0(s), (3)

where AG(s) = A1(s)/A0(s).
We define an analog notch filter G(s), which has the same

magnitude response as G1(s),

G(s) =
1

2

[
1 + A2

G(s)
]
. (4)

Therefore, the problem of a notch filter G(s) design is re-
duced to the design of an analog allpass filter AG(s).

Using (4), the magnitude response |G(jΩ)| is given by,

|G(jΩ)| =
∣∣cos

(
2φAG

(Ω)
)∣∣ , (5)

where φAG
(Ω) is the phase response of AG(s).

In order to obtain an ideal notch characteristic (B = A1p =
A2p = 0), the phase response φAG

(jΩ) has to satisfy,

φAG
(jΩ) =





0 0 ≤ Ω ≤ Ω1p,
π
2

Ω = Ω0,

π Ω2p ≤ Ω < ∞.

(6)

To approximate the desired phase (6), we could chose the
following allpass filter AG(s),

AG(s) =
1 + jF̃N(s)

1− jFN(s)
, (7)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



where F̃N(s) is the paraconjugate of FN(s) [6], and FN(s) is
a polynomial of order N, which has the following frequency
characteristic,

FN(jΩ) =





0 Ω ≈ 0,

1 Ω = Ω0,

∞ Ω → ∞.

(8)

We chose Butterworth, Chebyshev I, Chebyshev II and Ellip-
tic polynomials [7], to satisfy (8).

The resulting allpass filter AG(s) can be real or complex
depending on the parity of the order N i.e. AG(s) is real if N
is odd, otherwise is complex.

From (2) and (7), we arrive at,

G(s) =
1−FN(s)

1−2jFN(s)−F2
N(s)

. (9)

Therefore, the magnitude response of G(s) is given by,

|G(jΩ)| =

∣∣∣∣∣
1− F̃N(jΩ)FN(jΩ)

1 + F̃N(jΩ)FN(jΩ)

∣∣∣∣∣ . (10)

The rest of the paper is organized as follows. In the next
Section, we consider the design of real and complex allpass
filters AG(s) using Butterworth, Chebyshev and Elliptic poly-
nomials. Section III describes the proposed algorithm which
is illustrated with one example.

2. DESIGN OF ALLPASS FILTERS USING
DIFFERENT POLYNOMIALS

2.1 Butterworth polynomials

Using Butterworth polynomial [7], the allpass filter AG(s)
can be expressed as,

AG(s) =
1 + j

(
s

jΩ0

)N

1− j
(

s
jΩ0

)N
, (11)

where Ω0 is the notch frequency (see Fig. 1).
The poles of the allpass filter are,

sk = jΩ0e−j 1−4k
2N π , k = 0, . . . ,N −1. (12)

Using (9), the zeros of G(s) are,

sl = jΩ0ej πl
N , l = 0, . . . ,2N −1. (13)

From (10), the approximation of the allpass filter order
is,

N =




log
(

10Ap/20−1

10Ap/20+1

)

log
(

Ω1
Ω2

)




, (14)

where ⌈·⌉ is the ceiling function, Ap is the minimum value in
dB, defined as Ap = min(A1p,A2p), and

Ω1 = Ω0 −Ba/2, (15)

Ω2 = Ω0 + Ba/2, (16)

where Ba is the rejection bandwidth.
It is easily shown that the number of null derivatives of

the square magnitude response |G(jΩ)|2 at Ω = 0 is 2N − 1
i.e. the filter has maximally flat characteristic.

2.2 Chebyshev I polynomials

Using the Chebyshev I polynomials and (7), we arrive at

AG(s) =
1 + jε1pCN

(
s

jΩ1p

)

1− jε1pCN

(
s

jΩ1p

) , (17)

where CN(·) are the Chebyshev polynomials [7], and ε1p con-
trols the passband ripple in the first passband.

The corresponding poles of AG(s) are

sk = jΩ1p

[
acos

(uk

N

)
− jbsin

(uk

N

)]
, (18)

where

uk =
4k−1

2
π , (19)

v = arcsinh

(
1

ε1p

)
, (20)

a = cosh
( v

N

)
, (21)

b = sinh
( v

N

)
. (22)

From (9), it follows that the zeros of G(s) are,

sl = jΩ1p cos

(
±1

ε1p

+
2lπ

N

)
, l = 0, . . . ,N −1. (23)

Using (10) and A1p expressed in dB, the value of ε1p is
given by,

ε1p =

√
10A1p/20 −1

10A1p/20 + 1
. (24)

Substituting l = 0 into (23), the corresponding zero gives
the notch frequency Ω0. Therefore, we obtain the value Ω1p

as,

Ω1p =
Ω0

cos(arccos(1/ε1p)/N)
. (25)

From (10), the order of the allpass filter can be estimated
as,

N =




arccosh(ε2
1p)

arccosh
(

Ω2
Ω1

)




, (26)

where Ω1 and Ω2 are given in (15) and (16), respectively.

2.3 Chebyshev II polynomials

In this case the allpass filter (7) can be rewritten as,

AG(s) =
1 + j/ε2pCN

(
jΩ2p

s

)

1− j/ε2pCN

(
jΩ2p

s

) , (27)

where ε2p controls the passband ripple in the second pass-
band.

The poles of AG(s) are given as,

sk =
jΩ2p

acos
(

uk
N

)
− jbsin

(
uk
N

) , (28)
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where

uk =
4k + 1

2
π , (29)

w = arcsinh

(
1

ε2p

)
, (30)

a = cosh
( w

N

)
, (31)

b = sinh
( w

N

)
. (32)

The corresponding zeros of G(s) are expressed as,

sl =
jΩ2p

cos
(

arccos
(

±1
ε2p

)
+ 2πk

N

) , l = 0, . . . ,N −1. (33)

Using (10) and A2p in dB, we have,

ε2p =

√
10A2p/20 −1

10A2p/20 + 1
. (34)

Substituting l = 0 into (33), we obtain the value of Ω2p

from the notch frequency as,

Ω2p = Ω0 cos(arccos(1/ε2p)/N). (35)

To estimate the order of the allpass filter we use (26).

2.4 Elliptic

Using Elliptic polynomial in (7), we get the following allpass
filter,

AG(s) =
1 + jε1p cd

(
N Kε

KΩ
cd−1

(
s

jΩ1p
,

Ω1p

Ω2p

)
,ε1pε2p

)

1− jε1p cd
(

N Kε
KΩ

cd−1
(

s
jΩ1p

,
Ω1p

Ω2p

)
,ε1pε2p

) , (36)

where cd(·) is the elliptic function, Kε and KΩ are the com-
plete elliptic integrals with modulus ε1pε2p and Ω1p/Ω2p, re-
spectively [8].

Unfortunately, for this case there are no closed form
equations for the computation of the poles and zeros of G(s).

We use the method proposed in [8], which is based on
Landen transformation, to compute the poles of AG(s).

The order of the allpass filter is estimated as,

N =

⌈
KΩK′

ε

K′
ΩKε

⌉
, (37)

where their corresponding complementary elliptic integrals
of Kε and KΩ are denoted as K′

ε and K′
Ω, respectively.

3. PROPOSED ALGORITHM

In this Section we use the results from Section II to design
IIR notch filters, which are causal, stable, and real.

The parameters of the filter are the notch frequency ω0,
the passband ripple in both bands A1p and A2p, and the rejec-
tion bandwidth B.

The proposed algorithm has the following steps:

1. Prewarp the notch frequency ω0 and compute the fre-
quencies Ω1 and Ω2 as, (see Fig. 1)

Ω0 = tan
(ω0

2

)
, (38a)

Ω1 = tan

(
ω0 −B/2

2

)
, (38b)

Ω2 = tan

(
ω0 + B/2

2

)
. (38c)

2. Select the type of the filter (Butterworth, Chebyshev I,
Chebyshev II or Elliptic).

3. Compute the order N of the allpass filter using (14), (26),
or (37) and (38a)–(38c).

4. Compute the corresponding poles of AG(s) and design
the filters A0(s) and A1(s), i.e.

AG(s) =
A1(s)

A0(s)

=
α

α∗

∏
n1−1
k=0 (s/p∗ok + 1)∏

n2−1
k=0 (s/p∗ik + 1)

∏
n1−1
k=0 (s/pok −1)∏

n2−1
k=0 (s/pik −1)

, (39)

where (pik, p∗ik) and (pok, p∗ok) are complex conjugate pair
of poles in the left and right side, respectively, of the s
plane, n1 + n2 = N, and

α =

{
1− jε1p cos(Nπ

2
), Chebyshev I or Elliptic

1 otherwise
(40)

The complex conjugate of α is denoted as α∗.

A0(s) =
α∗

|α|

∏
n1−1
k=0 (s/pok −1)

∏
n1−1
k=0 (s/p∗ok + 1)

, (41)

A1(s) =
α

|α|

∏
n2−1
k=0 (s/p∗ik + 1)

∏
n2−1
k=0 (s/pik −1)

. (42)

5. Apply bilinear transformation to get the poles in z-plane.

6. Finally, using the digital counterpart of (2), i.e.

G1(z) =
1

2

[
A2

0(z)+ A2
1(z)

]
, (43)

design the IIR notch filter.

Example. This example illustrates the design of notch
IIR filter using Butterworth, Chebyshev I, Chebyshev II and
Elliptic polynomials. The parameters of the design are: the
notch frequency ω0 = 0.2π , the first passband ripple A1p = 1
dB, the second passband ripple A2p = 0.3 dB and B = 0.1π .

1. From (38) it follows, Ω0 = 0.324920, Ω1 = 0.240079 and
Ω2 = 0.414213.

2. For the Chebyshev and Elliptic filter, we calculate the
values of ε1p and ε2p, which are shown in Table 1.

3. We estimate the order of the allpass filter for all types of
filters and the frequencies Ω1p and Ω2p for Chebyshev
and Elliptic filters given in Table 1.

4. We compute the poles of AG(s).
5. We transform the poles from s-plane to z-plane.

6. Finally, we get the desired notch filters using (43). Figure
2 shows the magnitude responses of the designed filters
for different polynomials.
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Figure 2: Magnitude responses of the designed filters.

Butt. Cheb. I Cheb. II Elliptic

ε1p 0.239794 0.240885

ε2p 0.131407 0.130812

N 8 4 4 3

Ω1p 0.284545 0.279670

Ω2p 0.402877 0.407939

Table 1: Order of the allpass filter and values of ε1p, ε2p, Ω1p

and Ω2p.

Using Butterworth polynomial, the notch IIR filter has
maximally flat magnitude response at the frequencies ω = 0
and ω = π (Fig. 2(a)).

The magnitude response of the notch filter designed with
Chebyshev type I polynomials is equiripple in the first pass-
band and is maximally flat in the second passband (Fig.
2(b)). Similarly, using Chebyshev II polynomial, the mag-
nitude response of the notch filter is equiripple in the second
passband (Fig. 2(c)).

Finally, for elliptic polynomials the magnitude response
is equiripple in both passbands (see Fig. 2(d)).

We compare the proposed design with MATLAB de-
sign (file iirlpnormc.m) which uses least-pth norm con-
strained optimization [7].

Figure 2(d) shows the magnitude responses of the de-
signed filter using elliptic polynomials and iirlpnormc

function. We can notice that the proposed filter has smaller
ripples than the filter designed using iirlpnormc.m for
the same order and maximum pole radius 0.83.

4. CONCLUSIONS

This paper presents the design of IIR notch filter based on
proposed allpass analog filter and bilinear transform. Unlike
other methods, our approach can design either maximally flat
or equiripple notch filters in one or both passbands. The But-

terworth polynomial results in maximally flat filter while El-
liptic polynomial results in equiripple characteristic in both
passbands. Similarly, Chebyshev I and II polynomials are
equiripple in one passband and maximally flat in another one.
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