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ABSTRACT 
This paper proposes a new recursive scheme for estimating 
the maximum eigenvalue bound for autocorrelation matrices 
and its application to the stepsize selection in least mean 
squares (LMS)-type adaptive filters.  This scheme is devel-
oped from the Gershgorin circle theorem and the recursive 
nature of estimating the correlation matrix.    The bound of 
the maximum eigenvalue of a LL×  correlation matrix can 
be recursively estimated in )(LO  arithmetic complexity. 
Applying this new recursive estimate to the stepsize selection 
of LMS-type algorithms, the problem of over-estimating the 
maximum eigenvalue bound and hence the under-estimation 
of the stepsize in the conventional trace estimator is amelio-
rated. This significantly improves the transient convergence 
and tracking speed of LMS-type algorithms. To lower the 
extra steady state error caused by the use of bigger step-
sizes, an effective switching mechanism is designed and in-
corporated into the proposed algorithms so that a smaller 
stepsize can be invoked near the steady state. The superior 
performance of the proposed algorithms is verified by nu-
merical and computer simulations.  

1. INTRODUCTION 

Adaptive filters find important applications in signal proc-
essing, communications, control and many other areas [1]. 
Many adaptive algorithms have been proposed and one big 
family is the least mean squares (LMS) algorithms. The 
LMS-type algorithms are very widely used for their sim-
plicity and high numerical stability. They include the LMS 
algorithm [2][3], the TDLMS algorithm [4][5], and the fast 
LMS/Newton algorithm [6], to list just a few. These algo-
rithms have a low computational complexity of )(LO  
(where L is the number of taps of the adaptive filter) and 
thus are very attractive for applications involving high-
order adaptive filters. One disadvantage of the conventional 
LMS algorithm is its slow convergence and sensitivity to 
the eigenvalue spread of the input autocorrelation ma-
trix xxR . The latter problem, which is usually called the 
eigenvalue spread problem, is alleviated in TDLMS and 
fast LMS/Newton algorithms by pre-whitening the input 
signals with appropriate transformations. Another important 
issue in LMS-type algorithms is the selection of an appro-

priate stepsize µ  to ensure good performance and stability.  
More precisely, the mean convergence analysis of the 
LMS-type algorithms suggests that the stepsize should sat-
isfy max/20 λµ << , where maxλ is the largest eigenvalue of 
the input correlation matrix xxR  (for TDLMS, the input is 
the transformed and normalized input). Larger stepsizes 
will lead to faster initial convergence speed, but usually a 
higher steady-state error.  Since it is computationally ex-
pensive to calculate the maximum eigenvalue, a conven-
tional method is to estimate a bound of maxλ  as 

maxλ )( xxtr R<  , where tr(.) is the trace operator.  This is 
because the eigenvalues of the Hermitian matrix xxR are all 
non-negative and )( xxtr R  is equal to the sum of all eigen-
values of xxR .  The bound )(/20 xxtr R<< µ  is thus widely 
adopted, because of the reliability and simplicity in comput-
ing )( xxtr R , which amounts to adding the diagonal entries 
of xxR .  To see that the bound is loose, we can consider a 
simple but commonly encountered situation where the input 
is white with IR =xx .  The maximum eigenvalue is equal 
to one while tr(I) gives a bound of L, where LL×  is the 
dimension of I.  In other words, the stepsize will be over-
estimated and the effect will become more serious if the 
filter length is increased.  This explains the slow conver-
gence of LMS-type algorithms when the filter length is 
increased and the speedup observed in some LMS-type 
algorithms when the filter is implemented in cascade.    

In this paper, we propose a new recursive scheme for es-
timating the maximum eigenvalue bound for autocorrelation 
matrices. The algorithm is developed from the Gershgorin 
circle theorem (GCT) [7] and the recursive nature of estimat-
ing the correlation matrix.   It requires only )(LO  arithmetic 
complexity.  Simulation results show that the proposed esti-
mator significantly improves the convergence and tracking 
speed of the LMS-type algorithms. The resultant algorithms 
using this scheme are referred to as the Recursive Maximum 
Eigenvalue bound-based (RME) LMS-type algorithms.  On 
the other hand, due to consideration of misadjustment, the 
stepsize is usually chosen as L/Μµ ≈  where Μ is the 
value of intended misadjustment.  Therefore, in order to 
avoid excessive steady state error, we also propose an effec-
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tive switching mechanism based on the work in [8] so that a 
smaller stepsize can be invoked near the steady state. The 
superior performance of the proposed algorithms is verified 
by numerical and computer simulations. This paper is organ-
ized as follows: some conventional LMS-type algorithms are 
briefly reviewed in section 2. The new recursive maximum 
eigenvalue bound estimation scheme and its application to 
these LMS-type algorithms are presented in section 3. Ex-
perimental results and comparisons are presented in section 
4. Conclusions are drawn in section 5. To keep the presenta-
tion simple, all the derivations are given for real-valued sig-
nals. 

 

2. CONVENTIONAL LMS-TYPE ALGORITHMS 

Consider the identification of an unknown system with im-
pulse response ∗W  shown in Fig. 1. The unknown system 
and the adaptive filter with impulse response 

[ ]TL nwnwnwn )()()()( 21 L=W  are simultaneously 
excited by an input signal )(nx . The adaptive filter continu-
ously adjusts its weight coefficients according to certain 
algorithms to minimize certain performance criterion such 
as the mean-square-error (MSE) of the instantaneous esti-
mation error )(ne , which is the difference between the de-
sired signal )(nd  and the filter output )(ny . )(0 nd  is the 
output of the unknown system and )(0 nη  represents any 
possible modeling error and/or background noises. Some 
LMS-type algorithms are summarized as follows: 
 
2.1. LMS algorithm 
LMS algorithm is obtained by using the instantaneous esti-
mate of the gradient )()(2)(ˆ nneJ XW −=∇  in place of the 
true gradient in the steepest-descent algorithm. It can be 
summarized as 
 

)()()( 0 nnnd T η+= ∗ XW , (1) 

)()1()()( nnndne T XW −−= , (2) 

)()()1()( nnenn LMS XWW µ+−= . (3) 
 
where [ ]TL nxnxnxn )()()()( 21 L=X , LMSµ is the con-
stant stepsize controlling the convergence speed and steady 
state error. 
 
2.2. TDLMS algorithm 
The difference between TDLMS and LMS lies in the or-
thogonal transformation of the original input vector prior to 
the filtering process and the subsequent normalization in the 
updating algorithm, which can be summarized as 
 

)()( nn TXS = , (4) 

)()()()1()( 2 nnnenn TDLMS SWW −+−= Λµ . (5) 
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Figure 1 – System identification structure 

where the matrixT represents an orthogonal transformation 
such as the discrete cosine transform (DCT) and discrete 
Fourier transform (DFT). 

))()()(()( 2222
21

nnndiagn
Lxxx
−−−− = σσσΛ L , 

where )(2 n
ixσ , Li ,,2,1 L= , is the estimated input power on 

the i-th tap which can be updated as 
)()1()1()( 222 nxnn ixx ii σσ λσλσ −+−= , σλ is a positive con-

stant forgetting factor close to but less than 1. 
 
2.3. Fast LMS/Newton algorithm 
In the LMS/Newton algorithm, )(ˆ 1 nxx

−R , the estimate of the 
inverse of the input autocorrelation matrix )(nxxR , is em-
ployed in the weight update equation to decorrelate the in-
put vector so as to achieve faster convergence. In [6], the 
following fast LMS/Newton algorithm was proposed: 
 

)()()()( nMnMndne T WX −−−= , (6) 

)()()(~)()( 1
1

2 nnnnn Ea XLDLu −= , (7) 

)()()()1( nnenn aLNfast uWW µ+=+ . (8) 
 
The criteria of selecting µ for these three LMS-type algo-
rithms comply with those introduced in section 1, that is,  
 

)(/0 xxLMS trK R<< µ ,  (9) 
LLNfastTDLMS /, Μµµ ≈ . (10) 

 
where K is a positive constant that can be flexibly selected.  

 

3. PROPOSED RECURSIVE MAXIMUM 
EIGENVALUE BOUND ESTIMATION SCHEME 

AND ITS APPLICATION TO LMS-TYPE 
ALGORITHMS 

To avoid over-estimating the bound of µ  as in (9) and (10), 
we shall seek for a more accurate scheme for recursively 
updating )(max nλ . The Gershgorin circle theorem (GCT) 
identifies a region in the complex plane that contains all the 
eigenvalues of a square matrix. More specifically, for an 

LL× matrix R , define ∑
≠
==

L

ij
j iji rR 1 || , Li ,,2,1 L= , where 

ijr is the (i,j)-th element of R . Then each eigenvalue of R is 
in at least one of the disks 
 

}|:|{ iii Rr <−λλ . (11) 
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In adaptive filtering, R is the input autocorrelation ma-

trix xxR , which needs to be estimated recursively. A simple 
way is to update )(nxxR at each time instant, which usually 
needs an )( 2LO  arithmetic complexity. Next we propose a 
new maximum eigenvalue bound estimation scheme based 
on GCT.   

Let Bi(n) be the recursive estimate of Ri(n) , Then 
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(12) 
where ∑ =

=
L

j j nxns
1

|)(|)( , Bλ is also a positive constant 

forgetting factor close to but less than 1. Since the eigenvalue 
of the autocorrelation matrix is positive, a simpler bound for 
the maximum eigenvalue is 
 

))()((max)()( 2
maxmax nnBnn

ixii

B σλλ +=≤ . (13) 

 
The computational complexity is )(LO (3L+2 additions, L 
multiplications for FIR filter case and 4L-1 additions, L mul-
tiplications for array case). And if further complexity reduc-
tion is needed, we can use the following approximation 
  

]|)(|)(|)([|)1()1()( 2
minmax nxnsnxnBnB BB −⋅⋅−+−= λλ , 

(14) 
)()()()( 2

maxmax max
nnBnn x

B σλλ +=≤ . 
(15) 

Compare (12) ~ (15) with the conventional updating ap-
proach of )(nxxR , where the instantaneous estimate for the 
autocorrelation matrix is X(n)XT(n) and the recursive esti-
mate of )(nxxR  is )()()1( nnn T

xxB XXR +−λ . This reveals 
the maximum eigenvalue bound estimated by the proposed 
scheme is bigger than that obtained directly from the GCT. 
Nevertheless, the new estimate predicted by the proposed 
scheme is still smaller than the traditional estimate )( xxtr R , 
which can be illustrated in the experiments in section 4. This 
alleviates the over-estimation problem at the expense of 
moderate extra computation. Next we shall apply this new 
scheme in the LMS-type algorithms introduced in section 2.  
Define 
 

)(/)( max nKn B
RME λµ ′= . (16) 

 
we can then replace LMSµ , TDLMSµ and LNfastµ in (3), (5) and 
(8) respectively with (16). Since it takes several iterations for 

)(max nBλ  to stabilize, )(nRMEµ is chosen as the above constant 
stepsizes for the first S time instants. The value of S can be 

experimentally decided. The resultant algorithms are called 
the RME-LMS 1, RME-TDLMS 1 and RME-fast 
LMS/Newton 1algorithms.   

Although these algorithms possess improved initial con-
vergence speed, the steady state error will increase due to the 
larger stepsizes used. To overcome this problem, we pro-
posed to switch )(nMEEµ  back to LMSµ , TDLMSµ and 

LNfastµ when the algorithms are about to approach their 
steady states. We now propose a measure based on the work 
in [8]. This so-called GP-APA algorithm motivated us to 
measure the convergence status of the algorithm through the 
approximated derivatives of the filter weight as follows: 

 

∑ =
−=−

L

i i ncn
11 |)1(ˆ|||)1(ˆ|| c , 

)1(ˆ)1()(ˆ −−−= nwnwnc iii , 

(17) 

),1()1()1(ˆ)(ˆ −−+−= nwnwnw iii ηη   Li ,,2,1 L= . (18) 
 
where )(ˆ nwi is the averaged tap coefficient and )(ˆ nci is the 
averaged estimate of the coefficient gradient. 1|||| ⋅ represents 
the 1l  norm of a vector and η is the constant forgetting fac-
tor. The value of 1||)1(ˆ|| −nc will decrease and converge 
gradually from its initial value to a very small value when the 
algorithm is about to converge to its steady state. Therefore, 
there always exists a threshold below which we can say that 
the algorithm is near convergence. We now propose a method 
to compute this threshold for making the switching decision.  
More precisely, we first compute the absolute value of the 
approximate derivative of 1||)1(ˆ|| −nc as 

|||)1(ˆ||||)(ˆ|||)( 11 −−= nnnGc cc  and then the decaying ra-
tio =)(nχ 0/)( cc GnG , where 0

cG represents the approxima-
tion of the initial level of )(nGc , which is obtained by aver-
aging )(kGc  from Pk L,2,1= .  It provides a reference to 
measure the decay of the coefficients weight vector. A small 
value of )(nχ  indicates a diminished variations in the 
weight vector, and the filter is likely to be near the end of its 
initial converging period. By choosing appropriately a 
threshold, say χ̂ , it is possible to compare )(nχ  against this 
threshold to determine whether switching is necessary. When 

)(nχ  is larger than χ̂ , the algorithm is likely to be in its 
initial convergence stage and )(nMEEµ should be used to 
achieve fast convergence speed.  On the other hand, when 

)(nχ  falls below χ̂ , the algorithm is likely to converge to its 
steady state and constant stepsizes should be invoked to fur-
ther lower the steady state error. To guarantee that )(nχ  has 
actually decreased below the threshold, the switching deci-
sion should be made if )(nχ is less than χ̂  for Q consecu-
tive observations, where Q denotes the decision window 
length. The parameters χ̂ , P and Q can be chosen experi-
mentally in practical applications and simulation results show 
that the performance of the proposed algorithms is not very 
sensitive to these values if they are reasonably chosen. The 
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resultant algorithms after incorporating the switching mecha-
nism are called RME-LMS 2, RME-TDLMS 2 and RME-
fast LMS/Newton 2 algorithms to differentiate them from 
those introduced previously without the switching mecha-
nism. 

 

4. SIMULATION RESULTS 

We now evaluate the performance of the proposed algo-
rithms by computer simulation of the system identification 
problem depicted in Fig. 1. The order of the unknown sys-
tem is set to 50 and the coefficients are randomly generated 
and normalized to unit power. The power of the additive 
white Gaussian noise )(0 nη  is set to be 0.0001. Two kinds 
of input signals are employed: a white Gaussian input with 
zero mean, unit variance and Ltr xx =)(R , and a colored 
input derived from a first-order AR process driven by a unit 
power white sequence with coeffi-
cient 7.0=a , )1/()( 22 aLtr Ixx −=σR . For the RME algo-
rithms, 95.0=Bλ , 3/2=′K , S=50, K in (9) are selected to 
be 1/10 and 1/3 for the purpose of comparison 
and %10=Μ in (10). For the switching mecha-
nism, 1.0ˆ =χ , 20=P , and 100=Q . The proposed RME-
LMS, RME-TDLMS, RME-fast LMS/Newton algorithms 
and their conventional counterparts are tested in four ex-
periments. All the results are averaged over 100 independent 
runs. Exp. 1 RME-LMS vs. LMS. Fig. 2 (a) and Fig. 3 (a) 
show the results of using white and colored inputs respec-
tively. The RME-LMS algorithms exhibit significantly im-
proved transient convergence speed and algorithm 2 has 
very low steady state error. Fig. 2 (b) and Fig. 3 (b) illustrate 
the curves of )(max nBλ and )(max nλ computed from )(nxxR . 
Exp. 2 Test tracking ability. Colored input is employed. The 
slowly varying system is 

)()()()1( nvnwnwnw iiii ε+=+ , Li ,,2,1 L= , where ε  is 
a small constant equal to 0.02 and snvi )'( are a set of inde-
pendent Gaussian white noise sequences with unit variance. 
The performance index is the sum of squared coefficient 
error (MSD). Fig. 4 reveals that RME-LMS 1 and 2 algo-
rithms have the same behavior and outperform the LMS 
algorithm. Exp. 3 RME-TDLMS vs. TDLMS. Colored input 
is employed. Similar observations to experiment 1 were 
made from Fig. 5 that the RME-TDLMS algorithms outper-
form their conventional counterpart in transient convergence 
speed and algorithm 2 can also provide low steady state er-
ror. Exp. 4 RME-fast LMS/Newton vs. fast LMS/Newton. 
The input signal )(nx  is modeled as a 5-th order AR process 
with coefficients [1 -0.65 0.693 -0.22 0.309 -0.177] as given 
in [6]. From Fig. 6 it can be seen that the RME-fast 
LMS/Newton algorithms have similar convergence speed to 
the conventional algorithm when 3/1=K . However, the 
former still converge much faster than the latter 
when 10/1=K .  

 

5. CONCLUSION 

A new recursive maximum eigenvalue bound estimation 
scheme for autocorrelation matrices based on the 
Gershgorin circle theorem is presented in this paper. It has a 
computational complexity of )(LO .  By applying this new 
bound estimate scheme to conventional LMS-type algo-
rithms, faster transient convergence and tracking speed are 
obtained.  To avoid the extra steady state error caused by 
the use of larger stepsizes, an effective switching mecha-
nism is designed and incorporated into the proposed algo-
rithms so that a sufficiently small constant stepsize can be 
invoked in the steady state to reduce the extra error. 
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(a) 

 
(b) 

Figure 2 –Example of RME-LMS vs. LMS: white input case (a). 
MSE vs. time n; (b) )(max nBλ . 

 

 
(a) 

 
(b) 

 

Figure 3 –Example of RME-LMS vs. LMS: colored input case (a). 
MSE vs. time n; (b) )(max nBλ . 

 

 
Figure 4 –Example of tracking slowly varying system parameters. 
RME-LMS vs. LMS: colored input case. (MSD results vs. time n) 

 

 
Figure 5 –Example of RME-TDLMS vs. TDLMS: colored input 

case. 

 

 
Figure 6 –Example of RME-fast LMS/Newton vs. fast 

LMS/Newton: colored input case. 
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