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ABSTRACT
We use the Matching Pursuit algorithm to decompose
Green’s functions of varying systems. Feature vectors repre-
senting the Green’s functions are constructed from the pur-
suit approximation. Increasing distances among these vec-
tors are related to changing parameters in the systems. The
quality of the entries of the feature vectors is discussed and
the distances between these vectors are measured following
an adaptive approach. Results of the method are illustrated
using a geophysical example.

1. INTRODUCTION

We consider systemsL (x), depending on one or more pa-
rametersx, whose corresponding impulse responses/Green’s
functionsgx also depend in a more or less continuous way
on x. One can think ofx as a location or environmental vari-
able, like temperature that can influence impendances in an
electric circuit. Changing values forx will effect the impulse
responsesgx and so, by comparing differentgx one is also
able to detect changes in the systemL (x), and therefore in
the parameterx.

A way to analyse changing impulse responses is by cor-
relating the variousgx with each other. A high degree of
correlation can be related to slight changes in the parame-
ter(s)x, while a very low correlation rate may indicate abrupt
changes/singularities inx.

To compute a correlation rate between differentgx sev-
eral commonly used statistical measures are available. How-
ever, these classical measures become less effective ifgx con-
sists of combined characteristic wave packets all representing
a typical physical feature of the problem given byL (x). All
these wave packets may be influenced in different manners
by changingx. In such cases one should first identify typi-
cal waveguides appearing in eachgx and then compare these
waveguides in the changing setting.

A signal decomposition scheme that fits the requirements
mentioned above is the Matching Pursuit algorithm [1]. This
method is able to decompose physical data into wave pack-
ets that match best with the original waveguides ingx. Fur-
thermore, the decomposition is sparse and all wave packets,
called atoms, are well localised in time, scale and frequency.

In an earlier paper [2] we already discussed the use of
Matching Pursuit in a geoacoustic setting. In a shallow water
environment from a fixed location sonar pings were transmit-
ted towards a receiver coupled to a drifting buoy. Acoustic
impulse responses were measured at the receiver as it drifts
away from the source passing different sedimental regions.
Because of scattering with changing bottom properties along
the buoy track the measured impulse responses along the

track are also effected. They can be regarded as an exam-
ple of Green’s functiongx(t), signals that strongly depend
on the position of measurementx. Preliminary results were
achieved for identifying changes in sea bottom properties,
i.e., changing sediments.

In this paper we present a more sophisticated approach,
that not only yields better results for the geoacoustic exam-
ple, but also offers opportunities to analyse a larger class of
problems in different types of physical settings, but all deal-
ing with changing system variablesx in a systemL (x). We
recall the Matching Pursuit algorithm in Section 2. In Sec-
tion 3 we describe how the wave packets appearing in the
MP decomposition of changinggx can be compared in an ef-
ficient way. For this we discuss the topic of feature vectors.
Section 4 discusses several ways of optimising the use of fea-
ture vectors for these type of problems, and for the geoacous-
tic example in particular. Finally, Section 5 shows the effect
of our new approach reconsidering the geoacoustic example.

2. THE MATCHING PURSUIT APPROACH

We recall the Matching Pursuit (MP) signal decomposition
algorithm given by Mallat and Zhang [1]. This method
projects a signals ∈ L2(IR) on a redundant set of mono-
frequent scaled waveshγ ∈ L2(IR), called atoms, that result
from scaling, frequency modulation and time shifting of one
given window functionh, i.e.,

hγ(u) =
1√
a

h

(
u− t

a

)
e− ju f , γ = (a, t, f ) ∈ IR+× IR2. (1)

We supposeh to be normalized in energy (‖h‖2 = 1). Here,

we consider Gabor atomshγ , given byh(u) = 21/4e−πt2, i.e.,
the Gaussian window function with width 1/2π.

The algorithm starts by choosing a (redundant) count-
able set of atomshγn, that is complete inL2(IR). This can
be achieved by means of a tiling in the time-scale-frequency
domain (t,a, f ). Once this dictionary of atoms is available,
optimization of a cost function is used to find an atom, say
hγ0, that matches best with the signals by means of theL2-
inner product, i.e.,

|< s,hγ0 > | ≥ |< s,hγn > |, n > 0. (2)

The signals is then decomposed into

s=< s,hγ0 > hγ0 +R1s, (3)

with R1s a residual. In a rather straightforward way we de-
duce< R1s,hγ0 >= 0 and therefore

‖s‖2 = |< s,hγ0 > |2 +‖R1s‖2. (4)
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Next,R1s is decomposed in a similar way, namely by finding
the best matching atomhγ1, i.e.,

|< R1s,hγ1 > | ≥ |< R1s,hγn > |, n > 1.

This yields

R1s=< R1s,hγ1 > hγ1 +R2s,

and in an analogous way

‖R1s‖2 = |< s,hγ1 > |2 +‖R2s‖2.

By iteration we end up with the atomic decomposition

s=
∞

∑
n=0

< Rns,hγn > hγn, (5)

with R0s= s by definition. Furthermore, we have

‖s‖2 =
∞

∑
n=0

|< Rns,hγn > |2. (6)

Convergence of the projection pursuit algorithms was con-
jectured by P. Huber [3] and later proved by L. Jones [4].
The MP algorithm establishes a nonlinear decomposition of
a signals into a sum of atoms with some desirable physical
signature. Moreover, although the decomposition is nonlin-
ear we maintain an energy conservation law as if it was a
linear orthogonal decomposition. Equation (6) can be useful
for measuring the quality of an approximation of a signals
using a decomposition with onlyN atoms. The ratio

Es(N) =

N−1
∑

n=0
|< Rns,hγn > |2

‖s‖2 (7)

measures the amount of energy from the original signal rep-
resented by anN-atom decomposition. Observe that theL2-
approximation error is given by

‖s−sN‖2 =
∞

∑
n=N

|< Rns,hγn > |2 = ‖s‖2 (1−Es(N)),

with sN the approximation ofs using the firstN atoms.
Straightforwardly, we have from (6)

• 0≤ Es(N)≤ 1,

• lim
N→∞

Es(N) = 1,

• Es(N) < Es(N+1).

Furthermore, since the Pursuit algorithm chooses at each it-
eration step the most matching atom,Es(N) will be a concave
function. Therefore, summing|< Rns,hγn > |2 at each itera-
tion n in the MP algorithm yields a stop criterion to finish the
iterative process once a desired degree of approximation has
been reached. Experiments with different types of physical
data have shown that typicallyEs(N)∼ 0.75 for only a small
numberN, e.g.,N∼ 5. In Section 4 we discuss the values of
the energy ratio in more detail for the geoacoustic example,
as introduced in Section 1.

3. THE CONCEPT OF GABOR FEATURE
VECTORS

A common approach to measure similarities between images
is to use feature vectors. These are vectors associated to an
image as a kind of representative of that image. For a set of
more or less related images a set of associated feature vectors
can be constructed. The entries of such vectors represent typ-
ical features for the images, e.g. colour, symmetry measures,
affine invariances of the objects in the image.

Measuring distances between the feature vectors yields
information on the degree of similarity between images in a
given set. For a proper analysis of the similarities the fea-
tures should be strongly discriminating, i.e., differences in
one entry of the vector should be associated with ‘visible dif-
ferences’ in the corresponding images. Furthermore, since
feature vectors represent objects with many data entries (like
an image of 256×256 pixels) by a relatively low dimensional
vector, one should take care that mapping objects onto a fea-
ture vector is bijective within a given class of objects.

In this paper we identify (geophysical) signalssi ∈ L2(IR)
with feature vectors~vi using (5). Moreover, we represent
signalssi by 4N-dimensional feature vectors~vi , given by

~vi = (ci,1,ai,1, fi,1, ti,1, · · · ,ci,N,ai,N, fi,N, ti,N), (8)

the collection of all MP parameters ofsi,N, theN-term Ga-
bor decomposition ofsi , with ci,k :=< Rk−1si ,hγk−1 >. Since
waveforms appearing in geophysical data are very similar to
the functions in the dictionary of Gabor atoms, every group
of four related entries in~vi is able to represent one physical
characteristic of the given signal. This property makes such a
Gabor feature vector~vi a useful tool for discriminating differ-
ent physical signals. Convergence result (5) also guarantees
a bijective mapping fromsi to ~vi , which makes the vectors
well-defined.

The dimension 4N of the feature vectors is determined by
the number of atoms (N) used for approximating allsi . This
number will be related to the approximation error

‖si‖2 (1−Esi (N)).

For all si a numberNi is determined, such that the approxi-
mation error is less thanδ · ‖si‖2, for a givenδ > 0. Since
distances between vectors can only be measured if the vec-
tors have the same dimension we have to fixN for all si . The
number of atoms considered for allsi will be the maximum
of all Ni .

An alternative approach is to construct for eachsi anNi-
dimensional feature vector~vi . The distance between two vec-
tors~vi and~v j can be measured by considering~vi and~v j re-
stricted to the first 4·max(Ni ,Nj) entries. The advantage
of such an adaptive approach is that the distances are truely
measuring coherent structures within the main part of the sig-
nals. The first few atoms will be related to the most dominant
physical structures in the signals. Atoms with higher index
numbers will also be related to artefacts (noisy components)
within a signalsi . These can be covered by atoms with in-
dex numbers betweenNi andN, the maximum of allNi , if
this maximum differs too much fromNi . The undesirable
influence of these signal parts can be diminished in the cal-
culations following the adaptive approach. Experiments for
choosing a suitable number of atomsNi , i.e., an appropriate
approximation errorδ , is discussed in the next section.
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Both for the adaptive and the non-adaptive approach mu-
tual distances between feature vectors are measured using the
weighted Euclidean distance [6]

dσ (~vi ,~v j) = ‖diag(σ1, · · · ,σ4N)−1 (~vi −~v j)‖, (9)

with ‖ · ‖ the usual Euclidean vector norm and withσl the
variance of the set{~vi(l) }, for l = 1, . . . ,4N. Observe, that
in the adaptive approach we takeN = 4·max(Ni ,Nj).

4. GABOR FEATURE VECTORS IN PRACTICE

For comparing typical waveforms appearing in related sig-
nals si one can use the Gabor Feature Vector approach as
described in the previous section. For particular problems
the approach can be further optimised as some of the pa-
rameters may be of greater importance for the discriminating
character of the vectors than other physical variables. Also
the number of atomsN taken into account can be optimised
for a given problem. Although it seems that these optimi-
sations are strictly problem related, we can also make some
modifications for a general problem setting. Both classes of
modifications are discussed in this section

4.1 General Modifications

Weighted distance measures already take the diversity in
ranges of the parameters into account to get balanced fea-
ture vectors. However, if a feature vector entry does not have
a substantial contribution to the discriminating and identify-
ing character of the vectors, one better omits the entry for
distance calculations. Typically this is the case for position
parametersti,n once allsi are centered aroundti,0. Note that
one should be aware whether waveforms, to be compared
amonstsi , appear at similar places within the given set of
data. Data related to one physical phenomenon/mathematical
model often will satisfy this criterion for a large amount of
most importantti,n. Particularly, for our geoacoustic exam-
ple experiments showed that normalised position parameters
in the MP decomposition have negligable influence on the
distance computations.

An other a-priori optimisation step when comparing
characteristics of waveforms is given by a normalisation of
all si in L2-norm, such that allsi have energy equal to 1. This
normalisation is given by

s̃i =
si

‖si‖
.

Of course the energy in eachsi can be an important feature
as well. Therefore‖si‖2 is added to each feature vector~vi as
an additional entry. For the geoacoustic example this type of
normalisation means a great improvement of the results. This
is due to the fact that wheni becomes larger the length of the
propagation path from source to receiver becomes larger as
well, yielding a kind of linear decrease of the signal’s ampli-
tude. We expect that this type of normalisation can have sim-
ilar impact on the results obtained for other kinds of physical
problems.

A last general improvement concerns the interpretation
of distances between feature vectors. In practice the out-
come of the distance calculations may be influenced ef-
fected by environmental artefacts (‘noise’). If changes in
si depend continuously oni, one will be interested in val-
ues ofd fi = dσ (~vi ,~vi−1) compared tod fi−1,d fi−2, . . . and

d fi+1,d fi+2, . . .. A changing situation in the system will al-
ways be noticed by more than one distance as given above.
Therefore we suggest the following measure to indicate
changing feature vectors locally around samplei:

mean

(
dσ (~vi ,~vi+1) dσ (~vi−1,~vi+1) dσ (~vi−2,~vi+1)
dσ (~vi ,~vi+2) dσ (~vi−1,~vi+2) dσ (~vi−2,~vi+2)
dσ (~vi ,~vi+3) dσ (~vi−1,~vi+3) dσ (~vi−2,~vi+3)

)
.

We will denote this measure, the mean of all 9 distances
around samplei, asdi . By taking the mean of distance mea-
sures surrounding~vi we get a smoother functiondi as com-
pared tod fi . This is due to the spreading of incidentally
appearing high values ofd fi caused by noisy artefacts. The
concept can be generalized to arbitrary neighbourhoods of~vi ,
taking more or less than 3 surrounding feature vectors into
account. For the geoacoustic example experiments showed
best results fordi as presented above.

4.2 Problem Related Parameter Settings

Since the Gabor feature vector approach uses a lot of param-
eters it is hard to give some general statements on how to
optimise all parameters for any given physical problem. We
already mentioned two normalisations (center in time, nor-
malise energy) in the previous paragraph. Here we discuss
some other choices made for a specific physical problem,
namely the geoacoustic propagation problem as described in
Section 1. The choices we present here are based on experi-
ments for different buoy tracks, i.e., tracks of the receiver in
different regions of a shallow water environment. For more
information on the setting and the tracks of the experiments
we refer to [5].

The first choice to be made for this problem is whether
all MP parameters should be weighted equally. After nor-
malisation of allsi in time, obviously we can omit the po-
sition parametersti,n. Experiments also validated this, asdi
was negligably effected by omittingti,n in ~vi . Furthermore,
experiments showed that the frequency parametersfi,n only
had minor effect atdi . Althoughdi as a function ofi was in-
fluenced by the omission offi,n, neither more or less charac-
teristic changes indi appeared, according to local variations
in the system (sea bottom parameters). Therefore, frequency
parameters were not taken into account in the results in Sec-
tion 5.

Concerning the remaining parameters, experiments
showed that taking only the amplitude parametersci,n into
account most changes in the system are already reflected by
the corresponding distance measures. However, experiments
also showed that the scalesai,n yield a substantial contribu-
tion to the behaviour ofdi . In fact, some system changes
not picked up by the amplitudes of the Gabor atoms only,
were indicated bydi after adding the amplitudes to the fea-
ture vectors~vi . Resuming, for the geoacoustic example we
will construct 2N-dimensional feature vectors, given by

~vi = (ci,1,ai,1, · · · ,ci,N,ai,N). (10)

The last parameter to pay attention to is the number of
atomsN to be taken into account. Instead of experimenting
with different numbersN, we vary the desiredL2 approxi-
mation error‖si‖2 · (1−Esi (N)). This automatically yields
the numberNi corresponding to that particular error. For
the non-adaptive approach one can calculate one number of

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



0 50 100 150 200 250
0

5

10

15

20

25

indexnmbr impulse response

# a
to

m
s

Figure 1: Number of atomsNi corresponding to an energy
ratio of 80% (black) and 90% (red) in the MP decomposition
of 250 geoacoustic impulse responses.

atoms for all measured data. In Figure 1 we depictedNi for
250 measured geoacoustic impulse response (i = 1, . . . ,250)
for Esi = 0.8 (black) andEsi = 0.9 (red). Obviously, for the
adaptive approach withEsi = 0.9 the dimension of the feature
vectors (10) vary from 10 to 50, which emphasizes the differ-
ence between both methods. Furthermore, results obtained
from measuring the vectors showed thatEsi > 0.9 gave good
results. Particularly, we tookEsi > 0.95 for the results in the
next Section.

5. A GEOACOUSTIC EXAMPLE

The geoacoustic example we discuss is taken from the so-
called ENVERSE 97 experiments in a Mediterranean shal-
low water area by the NATO Undersea Research Center
(NURC), see [5]. Acoustic impulse responses were mea-
sured on receiver buoys drifting away from a fixed source.
Out of 8 different buoy tracks we have taken buoy track 1
for the example case, see Figure 2. The track of the buoy
receiver (pink) is depicted for measurements taken between
14:00 and 17:30 hours on 3 November 1997. The buoy re-
ceiver crossed different types of sediment (blue/yellow) and
sediment thickness (different color intensity). The geophys-
ical survey ENVERSE 98 characterised the ocean bottom at
particularly high spatial resolution using Swath multibeam
system, Uniboom profiler and sediment cores. This charac-
terisation of the bottom is used for GIS map in Figure 2. Fi-
nally, we observe that the ‘proof of principle’ for the Gabor
feature vector approach was also using buoy 1, however only
with modest success [2].

The geoacoustic impulse responses were obtained from
1 min repeated, long-duration chirp pulses with frequency
band 0.8-1.6 kHz. Each of the impulse responses has been
decomposed by teh Matching Pursuit algorithm and corre-
sponding feature vectors have been constructed. For these
vectors we used the normalisations, as described in Sec-
tion 4. Due to these normalisations the ommission of the
position and frequency parameters within the feature vectors
is made possible. Comparing the adaptive and non–adaptive

approach forEs(N) = 0.95 showed a slightly better perfor-
mance of the adaptive approach. For this amount of energy
in the approximation a varying number of atomsN are used
between 9 and 35, with an average of 18 atoms for all mea-
surements (254).

Figure 3 shows the performance of our method for this
particular example. The mean distances between feature vec-
tors, as described in Section 4, has been depicted. Most of
the major increases in distance measure are related to sed-
iment changes, indicated by arrows and corresponding ar-
rows in Figure 2. Only one sedimental change has not been
picked up by our method. On the other hand also only two
false alarms appear (14:20 and 15:25). The local maxima
in Figure 3 bounded by red rectangular areas can be related
to intrasedimental changes, that of course also change the
physical conditions and therefore also the Green’s functions
measured at these positions. In Figure 2 these intrasedimen-
tal changes are indacted by closed white curves (with a blue
background).

Finally, we observe that for this type of example the time-
varying oceanography (sound speed profile) along the acous-
tic path may also produce artefacts. Moreover, the acoustic
transmission path varies since the source location and suc-
cessive receiving points are typically not collinear, the buoys
being driven by the currents. Results, similar as shown here,
were obtained for other buoy tracks from the ENVERSE ex-
periments. For all other buoy tracks considered, the set–up
and normalisations as discussed for the buoy 1 track gave
also the best results for other tracks. Results for this and
other tracks will be discussed in a forthcoming paper.

6. CONCLUSIONS

Gabor feature vectors have been proposed to analyse Green’s
functions of changing systems. Parameters within the pro-
posed method have been discussed to find an optimal set-
ting of the approach. Furthermore, to reduce the influence
of noisy artefects an adaptive strategy has been introduced
based on desired energy ratio levels for the approximation of
Green’s function by Gabor atoms.

A problem from underwater acoustics has been taken as
an example of a system with changing Green’s functions. We
have shown that for this example a 1–1 relation between ma-
jor changes at the sea bottom and changing Gabor feature
vectors is established. Using this relation the unsupervised
adaptive method demonstrated a good performance. Almost
all bottom changes were correctly detected with only very
few false alarms allowing to identify subareas of distinct
geoacoustic properties.

Although the example discussed here showed good re-
sults for our method it cannot act like a model example allow-
ing our method to perform similar on all similar problems.
Moreover, some parameters in the method are optimised for
this particular example. However, most considerations hold
for a general setting, supporting the fact that the method can
also be used for similar type of problems.
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Figure 2: Track of buoy 1 (pink line) during the ENVERSE experiments, southern Marettimo (Sicily) shelf, 3 November 1997.
The dots along the track are 10-min spaced time marks. The color map indicates the general nature of the bottom as determined
from a geophysical survey in 1998. Modern sediments (yellow-brown) overly disconformably Pleistocene succession or fill
pockets on a rough rocky substratum of Mesozoic limestones (blue). Adapted from Hermand et al. [5].
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Figure 3: Averaged distances between consecutive Gabor feature vector. Most maximum values of the distances are related to
sediment changes in Figure 2, indicated by corresponding arrows. Peaks within the red areas can be related to intrasedimental
changes. Two major peaks can be considered as false alarms.
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