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ABSTRACT track are also effected. They can be regarded as an exam-
We use the Matching Pursuit algorithm to decomposeple of Green’s functiorg(t), signals that strongly depend
Green's functions of varying systems. Feature vectors reprean the position of measuremext Preliminary results were
senting the Green’s functions are constructed from the purachieved for identifying changes in sea bottom properties,
suit approximation. Increasing distances among these ved-€., changing sediments.
tors are related to changing parameters in the systems. The In this paper we present a more sophisticated approach,
quality of the entries of the feature vectors is discussed anthat not only yields better results for the geoacoustic exam-
the distances between these vectors are measured followidge, but also offers opportunities to analyse a larger class of
an adaptive approach. Results of the method are illustrategroblems in different types of physical settings, but all deal-

using a geophysical example. ing with changing system variablesn a systemZ’(x). We
recall the Matching Pursuit algorithm in Section 2. In Sec-
1. INTRODUCTION tion 3 we describe how the wave packets appearing in the

. . MP decomposition of changirg, can be compared in an ef-
We consider system&’(x), depending on one or more pa- ficient way. For this we discuss the topic of feature vectors.

frame;ersg whlose dcorrezp_ondmg |mpuls|e responses/Greengection 4 discusses several ways of optimising the use of fea-
unctionsgy a scr)]_ Ept;:(n in Ia more or 1ess contlnuolus Wakyre vectors for these type of problems, and for the geoacous-
onx. One can think ok as a location or environmental vari- i example in particular. Finally, Section 5 shows the effect

able, like temperature that can influence impendances in &} o new approach reconsidering the geoacoustic example.
electric circuit. Changing values farwill effect the impulse

responseslx and so, by comparing differeigk one is also 2 THE MATCHING PURSUIT APPROACH
able to detect changes in the syst&fiix), and therefore in '
the parametex. We recall the Matching Pursuit (MP) signal decomposition

A way to analyse changing impulse responses is by comlgorithm given by Mallat and Zhang [1]. This method
relating the variougy, with each other. A high degree of projects a signabk L?(R) on a redundant set of mono-
correlation can be related to slight changes in the paramdrequent scaled waves, € L(R), called atoms, that result
ter(s)x, while a very low correlation rate may indicate abruptfrom scaling, frequency modulation and time shifting of one
changes/singularities given window functiorh, i.e.,

To compute a correlation rate between differgnsev-
eral commonly used statistical measures are available. How, () = 1 h (u—t) e U y=(at,f)eR" xR? (1)
ever, these classical measures become less effeatjvedh- va a
sists of combined characteristic wave packets all representi . . .

a typical physical feature of the problem given&§(x). All We supposdn to be normahzgd in energy|il2 = 1). 2H_ere,
these wave packets may be influenced in different mannete consider Gabor atonfig, given byh(u) = 2/4e™™ i.e.,

by changingx. In such cases one should first identify typi- the Gaussian window function with widtty2z.

cal waveguides appearing in eaghand then compare these  The algorithm starts by choosing a gredundapt) count-
waveguides in the changing setting. able set of atomé,, that is complete inL“(R). This can

A signal decomposition scheme that fits the requirementie achieved by means of a tiling in the time-scale-frequency
mentioned above is the Matching Pursuit algorithm [1]. Thisdomain ,a, f). Once this dictionary of atoms is available,
method is able to decompose physical data into wave pacleptimization of a cost function is used to find an atom, say
ets that match best with the original waveguideg,inFur-  hy,, that matches best with the sigrealby means of the.2-
thermore, the decomposition is sparse and all wave packet§ner product, i.e.,
called atoms, are well localised in time, scale and frequency.

In an earlier paper [2] we already discussed the use of | <Shp>12]<shy>]n>0 2)
Matching Pursuit in a geoacoustic setting. In a shallow wateT he sighakis then decomposed into
environment from a fixed location sonar pings were transmit-
ted towards a receiver coupled to a drifting buoy. Acoustic S=<8,My, > hy, +Rus, (3)
impulse responses were measured at the receiver as it driffgth R;s a residual. In a rather straightforward way we de-
away from the source passing different sedimental regiongjuce< Rys, hy, >= 0 and therefore
Because of scattering with changing bottom properties along
the buoy track the measured impulse responses along the s> = | < s hy, > >+ ||Rus|. 4)
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Next, R;sis decomposed in a similar way, namely by finding 3. THE CONCEPT OF GABOR FEATURE

the best matching atotm,, i.e., VECTORS
| <Rishy, >|>|<Rish,>|,n>1 A common approach to measure similarities between images
is to use feature vectors. These are vectors associated to an
This yields image as a kind of representative of that image. For a set of
more or less related images a set of associated feature vectors
Ris=<Rys,hy, > hy, +Res, can be constructed. The entries of such vectors represent typ-
) ical features for the images, e.g. colour, symmetry measures,
and in an analogous way affine invariances of the objects in the image.
) ) ) Measuring distances between the feature vectors yields
[Ras] = | <s,hy > [+ ][[Res|”. information on the degree of similarity between images in a

_ . . . . given set. For a proper analysis of the similarities the fea-
By iteration we end up with the atomic decomposition ;15 should be strongly discriminating, i.e., differences in
® one entry of the vector should be associated with ‘visible dif-
S= ZO< Rns hy, > hy,, (5) ferences’ in the corresponding images. Furthermore, since
h= feature vectors represent objects with many data entries (like
an image of 256 256 pixels) by a relatively low dimensional

with Ros = s by definition. Furthermore, we have vector, one should take care that mapping objects onto a fea-
o ture vector is bijective within a given class of objects.
HSHZ — ZJ < Rqs hy, > |2_ (6) In this paper we identify (geophysical) signal& L?(R)
e with feature vectors/; using (5). Moreover, we represent

signalss by 4AN-dimensional feature vectots given by
Convergence of the projection pursuit algorithms was con-
jectured by P. Huber [3] and later proved by L. Jones [4]. Vi=(C,a1,fiLti1, - ,CN,aN, finstin), (8)
The MP algorithm establishes a nonlinear decomposition of
a signals into a sum of atoms with some desirable physicalthe collection of all MP parameters sfy, the N-term Ga-
signature. Moreover, although the decomposition is nonlinbor decomposition o, with ¢; \ :=< R¢_15,hy_, >. Since
ear we maintain an energy conservation law as if it was avaveforms appearing in geophysical data are very similar to
linear orthogonal decomposition. Equation (6) can be usefuhe functions in the dictionary of Gabor atoms, every group
for measuring the quality of an approximation of a sigsal of four related entries if; is able to represent one physical
using a decomposition with onlyf atoms. The ratio characteristic of the given signal. This property makes such a
Gabor feature vectak a useful tool for discriminating differ-

Nfl‘ <Rush, > 2 ent physical signals. Convergence result (5) also guarantees
nZO T a bijective mapping frons to Vi, which makes the vectors
Es(N) = B (") weli-defined.

The dimension M of the feature vectors is determined by

measures the amount of energy from the original signal reghe number of atoms\) used for approximating a#i. This
resented by aN-atom decomposition. Observe that ife ~ number will be related to the approximation error
approximation error is given by )

[slI*(1—Es(N)).

Is—sn | = Zu| < Ras,hy, > |2 = |8 (1 Es(N)), For alls a numbe; is determined, such that the approxi-
n= mation error is less thad - ||s ||2, for a given§ > 0. Since

distances between vectors can only be measured if the vec-

tors have the same dimension we have td\fifor all 5. The

number of atoms considered for gllwill be the maximum

of all N;.

An alternative approach is to construct for eachn N;-
dimensional feature vect®y. The distance between two vec-

with sy the approximation ofs using the firstN atoms.
Straightforwardly, we have from (6)

e 0<E{(N)<1,

° hl,lnmES(N) =1, tors Vi andV; can be measured by consideriigandv; re-
stricted to the first 4max(N;,N;) entries. The advantage
e E5(N) <Es(N+1). of such an adaptive approach is that the distances are truely

measuring coherent structures within the main part of the sig-
Furthermore, since the Pursuit algorithm chooses at each itals. The first few atoms will be related to the most dominant
eration step the most matching atdgg(N) will be a concave physical structures in the signals. Atoms with higher index
function. Therefore, summing< Rqs, hy, > % at each itera- numbers will also be related to artefacts (noisy components)
tion nin the MP algorithm yields a stop criterion to finish the within a signals. These can be covered by atoms with in-
iterative process once a desired degree of approximation hdex numbers betweeN;, andN, the maximum of allN;, if
been reached. Experiments with different types of physicahis maximum differs too much from\;. The undesirable
data have shown that typicalBg(N) ~ 0.75 for only a small  influence of these signal parts can be diminished in the cal-
numbem, e.g.,N ~ 5. In Section 4 we discuss the values of culations following the adaptive approach. Experiments for
the energy ratio in more detail for the geoacoustic examplezhoosing a suitable number of atofds i.e., an appropriate
as introduced in Section 1. approximation errod, is discussed in the next section.
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Both for the adaptive and the non-adaptive approach mud fi,1,d fi 2,.... A changing situation in the system will al-
tual distances between feature vectors are measured using thiays be noticed by more than one distance as given above.
weighted Euclidean distance [6] Therefore we suggest the following measure to indicate

changing feature vectors locally around sarmiple

do(V,V)) = |[diag(o1, -+, oan) 2% —)[l,  (9)
do(Vi,Viz1) do(Vie1,Vig1) do(Vie2,Viy1)
mean

with || - || the usual Euclidean vector norm and with the
variance of the sefvi(l) }, for| = 1,...,4N. Observe, that
in the adaptive approach we takie= 4- max(N;,N;).

do(Vi,Vit2) do(Vi—1,Vit2) do(Vi—2,Vii2)
Ao (Vi,Viz3) do(Vie1,Vigs) do(Vie2,Viy3)

We will denote this measure, the mean of all 9 distances
4. GABOR FEATURE VECTORS IN PRACTICE around samplé asd;. By taking the mean of distance mea-

For comparing typical waveforms appearing in related sig—Sures surrounding; we get a smoother function as com-

nalss one can use the Gabor Feature Vector approach dgred todfi. This is due to the spreading of incidentally
described in the previous section. For particular problem§lppearlng high values aff; caused by noisy artefacts. The
the approach can be further optimised as some of the p&2"NCEPt can be generalized to arbitrary neighbourhoods of
rameters may be of greater importance for the discriminatin Clgggnrpolr:%rotrhlgssetohg‘cno 3;???;??3 ;eat:rr.?n‘éﬁgoéﬁc;mg p
character of the vectors than other physical variables. Als t? ' its fod 9 ; r?t clj va pie exper W
the number of atombl taken into account can be optimised estresults fod; as presented above.

for a given problem. Although it seems that these optimi- .
sations are strictly problem related, we can also make somAé2 Problem Related Parameter Settings

modifications for a general problem setting. Both classes dbince the Gabor feature vector approach uses a lot of param-

modifications are discussed in this section eters it is hard to give some general statements on how to
optimise all parameters for any given physical problem. We
4.1 General Modifications already mentioned two normalisations (center in time, nor-

malise energy) in the previous paragraph. Here we discuss
some other choices made for a specific physical problem,
amely the geoacoustic propagation problem as described in

a substantial contribution to the discriminating and identify- ectior]l 1 de?e choéces we pl:esgnt herekarefbﬁsed on experi-
ing character of the vectors, one better omits the entry fof?€Nts for different buoy tracks, 1.€., tracks of the receiver in

distance calculations. Typically this is the case for positiorflifférent regions of a shallow water environment. For more
parameters , once alls are centered arourtgh. Note that information on the setting and the tracks of the experiments

one should be aware whether waveforms, to be compare§€ réfer o [5]. _ ,
amonsts, appear at similar places within the given set of The first choice to be made for this problem is whether
data. Data related to one physical phenomenon/mathematic,%” MP parameters should be weighted equally. After nor-
model often will satisfy this criterion for a large amount of Malisation of alls in time, obviously we can omit the po-
most important; ,. Particularly, for our geoacoustic exam- Sition parameters .. Experiments also validated this, ds
ple experiments showed that normalised position paramete¥é@S negligably effected by omittirgy in Vi. Furthermore,

in the MP decomposition have negligable influence on thﬁxperiments showed that the frequency paramefigrenly
distance computations. ad minor effect atlj. Althoughd; as a function of was in-

An other a-priori optimisation step when comparing luénced by the omission df n, neither more or less charac-
characteristics of waveforms is given by a normalisation of€MStic changes id; appeared, according to local variations

all s in L2-norm, such that al have energy equal to 1. This N the system (sea bottom parameters). Therefore, frequency
normalisation is given by parameters were not taken into account in the results in Sec-

Weighted distance measures already take the diversity i
ranges of the parameters into account to get balanced fe
ture vectors. However, if a feature vector entry does not hav!

tion 5.
£ S Concerning the remaining parameters, experiments
S = s’ showed that taking only the amplitude parametggsinto

account most changes in the system are already reflected by
Of course the energy in eashcan be an important feature the corresponding distance measures. However, experiments
as well. Thereforéfs || is added to each feature vecthas  also showed that the scalas, yield a substantial contribu-
an additional entry. For the geoacoustic example this type dafon to the behaviour ofi. In fact, some system changes
normalisation means a greatimprovement of the results. Thisot picked up by the amplitudes of the Gabor atoms only,
is due to the fact that whdrbecomes larger the length of the were indicated byl after adding the amplitudes to the fea-
propagation path from source to receiver becomes larger agre vectorsy;. Resuming, for the geoacoustic example we
well, yielding a kind of linear decrease of the signal’'s ampli-will construct N-dimensional feature vectors, given by
tude. We expect that this type of normalisation can have sim-
ilar impact on the results obtained for other kinds of physical Vi =(Ci1,8 1, ,CiNs8iN)- (20)
problems. '

A last general improvement concerns the interpretation The last parameter to pay attention to is the number of
of distances between feature vectors. In practice the outtomsN to be taken into account. Instead of experimenting
come of the distance calculations may be influenced efwith different numbersN, we vary the desiretl? approxi-
fected by environmental artefacts (‘noise’). If changes inmation error]|s || (1 — E5(N)). This automatically yields
s depend continuously on one will be interested in val- the numberN; corresponding to that particular error. For
ues ofdfi = ds(Vi,Vi_1) compared tod fi_1,dfi_»,... and  the non-adaptive approach one can calculate one number of
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approach folEg(N) = 0.95 showed a slightly better perfor-
mance of the adaptive approach. For this amount of energy
in the approximation a varying number of atoisre used
between 9 and 35, with an average of 18 atoms for all mea-
surements (254).

Figure 3 shows the performance of our method for this
particular example. The mean distances between feature vec-
tors, as described in Section 4, has been depicted. Most of
the major increases in distance measure are related to sed-
iment changes, indicated by arrows and corresponding ar-
rows in Figure 2. Only one sedimental change has not been
picked up by our method. On the other hand also only two
false alarms appear (14:20 and 15:25). The local maxima

ﬁw M
N M/

in Figure 3 bounded by red rectangular areas can be related
to intrasedimental changes, that of course also change the
physical conditions and therefore also the Green’s functions
measured at these positions. In Figure 2 these intrasedimen-
% 50 100 _ 150 200 250 tal changes are indacted by closed white curves (with a blue
indexnmbr impulse r esponse
background).
Finally, we observe that for this type of example the time-

varying oceanography (sound speed profile) along the acous-
tic path may also produce artefacts. Moreover, the acoustic
transmission path varies since the source location and suc-
cessive receiving points are typically not collinear, the buoys
being driven by the currents. Results, similar as shown here,
were obtained for other buoy tracks from the ENVERSE ex-
periments. For all other buoy tracks considered, the set—up

for Eq = 0.8 (black) andgg = 0.9 (red). Obviously, for the o .
. : : ; and normalisations as discussed for the buoy 1 track gave
adaptive approach witliy = 0.9 the dimension of the feature also the best results for other tracks. Results for this and

vectors (10) vary from 10 to 50, which emphasizes the differ- er tracks will be discussed in a forthcomingd paper.
ence between both methods. Furthermore, results obtamf%h g pap

from measuring the vectors showed tEgt> 0.9 gave good
results. Particularly, we tooks > 0.95 for the results in the
next Section.

Figure 1: Number of atomB) corresponding to an energy
ratio of 80% (black) and 90% (red) in the MP decomposition
of 250 geoacoustic impulse responses.

atoms for all measured data. In Figure 1 we depidietbr
250 measured geoacoustic impulse respons€l(. . .,250)

6. CONCLUSIONS

Gabor feature vectors have been proposed to analyse Green’s
functions of changing systems. Parameters within the pro-
5. A GEOACOUSTIC EXAMPLE posed method have been discussed to find an optimal set-
. . . ting of the approach. Furthermore, to reduce the influence
The geoacoustic example we discuss is taken from the sQz 15isy artefects an adaptive strategy has been introduced
called ENVERSE 97 experiments in a Mediterranean shalpaqeq on desired energy ratio levels for the approximation of
low water area by the NATO Undersea Research Centekreen’s function by Gabor atoms.
(NURC), see [5]. Acoustic impulse responses were mea-  a nroblem from underwater acoustics has been taken as
sured on receiver buoys drifting away from a fixed source,, example of a system with changing Green’s functions. We
Out of 8 different buoy tracks we have taken buoy track L, shown that for this example a 11 relation between ma-
for the example case, see Figure 2. The track of the buoi, changes at the sea bottom and changing Gabor feature
re(?elver (plnk? is depicted for measurements taken betweei, (s s established. Using this relation the unsupervised
14:00 and 17:30 hours on 3 November 1997. The buoy re3y,ntive method demonstrated a good performance. Almost
ceiver crossed different types of sediment (blue/yellow) an Il bottom changes were correctly detected with only very
sediment thickness (different color intensity). The geophysge,, ta5e alarms allowing to identify subareas of distinct
ical survey ENVERSE 98 characterised the ocean bottom oacoustic properties.
particularly high spatial resolution using Swath multibeam Although the example discussed here showed good re-
system, Uniboom profiler and sediment cores. This charags s for our method it cannot act like a model example allow-
terisation of the bottom is used for GIS map in Figure 2. Fiy ing our method to perform similar on all similar problems.

nally, we observe that the "proof of principle’ for the Gabor(\/Ioreover, some parameters in the method are optimised for
feature vector approach was also using buoy 1, however onfy,is naricular example. However, most considerations hold

with modest success [2]. _ for a general setting, supporting the fact that the method can
The geoacoustic impulse responses were obtained frof)s, pe used for similar type of problems.

1 min repeated, long-duration chirp pulses with frequency

band 0.8-1.6 kHz. Each of the impulse responses has be

decomposed by teh Matching Pursuit algorithm and corre ?Ar&knowledgment
sponding feature vectors have been constructed. For the3éis research was carried out within the REA project at the
vectors we used the normalisations, as described in SeBRoyal Netherlands Naval College and the joint project AO-
tion 4. Due to these normalisations the ommission of thaBUOY with the NATO Undersea Research Centre (NURC),
position and frequency parameters within the feature vectoisa Spezia, Italy. The ENVERSE 97-98 experimental data
is made possible. Comparing the adaptive and non—adaptiveere provided by NURC. Special thanks to E. Michelozzi,
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Figure 2: Track of buoy 1 (pink line) during the ENVERSE experiments, southern Marettimo (Sicily) shelf, 3 November 1997.
The dots along the track are 10-min spaced time marks. The color map indicates the general nature of the bottom as determined
from a geophysical survey in 1998. Modern sediments (yellow-brown) overly disconformably Pleistocene succession or fill
pockets on a rough rocky substratum of Mesozoic limestones (blue). Adapted from Hermand et al. [5].
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Figure 3: Averaged distances between consecutive Gabor feature vector. Most maximum values of the distances are related to
sediment changes in Figure 2, indicated by corresponding arrows. Peaks within the red areas can be related to intrasedimental
changes. Two major peaks can be considered as false alarms.

NURC, and M. Agate, Univ. of Palermo, for their involve- [5] J.-P. Hermand, P. Boni, E. Michelozzi, P. Guerrini,
ment in the geophysical survey, and to P. Guerrini, P. Boni, M. Agate, A. Borruso, A. D’Argenio, D. Di Maio,

F. Spina and P. Nardini, NURC, for the engineering support.  C. Lo lacono, M. Mancuso, and M. Scannavino, “Geoa-

coustic inversion with drifting buoys: EnVerse1997-98
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