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ABSTRACT
The conventional Embedded Zerotree Wavelet (EZW) algo-
rithm takes advantage of the hierarchical relationship among
subband coefficients of the pyramidal wavelet decomposi-
tion. Nevertheless, it performs worse when used with Wa-
velet Packets as the hierarchy becomes more complex. In
order to address this problem we propose a new technique
that considers no relationship among coefficients, and is the-
refore suitable for use with Wavelet Packets. So in this work,
an embedded ECG compression scheme is presented using
Wavelet Packets that shows better ECG compression perfor-
mance than the conventional EZW.

Keywords: Electrocardiogram (ECG), ECG compres-
sion, Embedded Zerotree Wavelet, Wavelet Packets (WP),
channel bank filter, filtering theory, filter bank.

1. INTRODUCTION

The design of electrocardiogram (ECG) compression tech-
niques has been widely studied in the last few years. An
outline of the most common techniques can be seen in [1],
where a classification in three categories was proposed:di-
rect methods, transform methods and parameter extraction
methods. Since the early 90s, there have been many contri-
butions among thetransform methodsdue to the use of the
Wavelet Transform, which has allowed the improvement of
the compression ratios reported by the priortransform met-
hods.

The Embedded Zerotree Wavelet (EZW) algorithm was
specifically designed to use the Discrete Wavelet Transform
(DWT) [2] in image coding applications. This method de-
monstrated good performance and was quickly applied to ot-
her types of signals, such as ECG [3] and myoelectric [4]
signals. In the DWT decomposition algorithm, every coef-
ficient at any scale is related with two other coefficients at
the immediate lower scale. This correspondence is iterated
through scale giving the temporal orientation tree. An exam-
ple is illustrated in Fig. 1. The set of a coefficient and its
descendents is called zerotree. In the encoding process, the
whole set of coefficient of a zerotree can be pointed by its
root which is the first coefficient of the temporal orientation
tree at the lower scale. In the encoding–decoding process,
a coefficient is called significant if its amplitude is greater
than a given threshold valueε. Therefore, depending on the
magnitude of a coefficient related toε, i.e., its significance,

it can be encoded as a symbol of a reduced alphabet to ob-
tain a significance map. The EZW algorithm takes into ac-
count the hierarchy of the DWT coefficients among different
subbands to efficiently encode the significance map and use
an alphabet of four symbols [2]:{POS, NEG, IZ, ZTR}.
Symbols{POS} and{NEG} indicate the sign of a significant
coefficient. A non significant coefficient is encoded with the
symbol{ZTR} if it is the root of a zerotree, i.e., if all the
coefficients of the zerotree are also non significant. Conver-
sely, the non significant coefficient is encode as an isolate
zero with the symbol{IZ}.

In the ECG compression case, a modified version of the
EZW algorithm is reported in [3] that uses Wavelet Packets
(WP), but the resulting algorithm performed worse than the
DWT–based algorithm. The reason for the poor performance
in the WP case is that the best basis decomposition often
splits the signal into a number of smaller hierarchies that can-
not be efficiently encoded by zerotrees.

The motivation of this work has been the development of
an EZW-based algorithm to be used with WP. To do so, the
hierarchical relationships among coefficients has not beenta-
ken into consideration. In this sense, the{ZTR} [2] symbol
that identifies the root of a zerotree is withdrawn from the
alphabet so that only three symbols ({POS, NEG, IZ})
encode the significance map.

In this paper we present a versatile embedded encoding
scheme to be used with WP —Embedded Wavelet Packets
(EWP) algorithm. Simulations results are provided demons-
trating the improvement in performance of the proposed en-
coder over the original EZW DWT–based algorithm. Finally,
we want to emphasize that although this work focus on ECG,
other kinds of signals such as myoelectric signals or images
(processed using linear–phase filter banks) can be also com-
pressed with the proposed algorithm.

2. WAVELETS PACKETS

The Discrete Wavelet Transform (DWT) decomposes a sig-
nal f (t) as a successive approximation in several scales as
follows [5]
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Figure 1: Algorithm for the computation of DWT. A temporal orien-
tation tree scheme is depicted showing the relationships among
coefficients through scale.

where bases functions are dilated and translated versions of
the wavelet functionψ(t) as well as the scaling function
ϕ(t).

The coarse details off (t) are represented by the scaling
coefficientsc j0(k) while the finer details are represented by
the wavelets coefficientsd j(k). An efficient way to compute
the wavelet transform is by means of a 2-channel perfect re-
construction filter bank applied iteratively to the low pass
channel as shown in Fig. 1, where the number of layers or
levels of the resulting filter bank depends on the desired re-
solution scale. The inverse transform is carried out with the
corresponding synthesis filter bank.

WP theory is the generalization of DWT. The input signal
is decomposed applying the 2-channel perfect reconstruction
filter bank at both the low and high pass branch. The resul-
ting binary tree is considered as a library of bases of which
only one would be needed to represent the incoming signal.
The number of basesAn for ann–layered WP can be recursi-
vely calculated as

An = 1+An−1
2, (2)

whereAn−1 is the number of bases of a(n−1)–layered WP,
beingA0 = 1. Therefore, WP can be utilized adaptively by
selecting the best basis, that basically consists of pruning the
tree according to a cost function. The best basis selection al-
gorithm used in this work is the proposed in [6]. An example
of how the best basis selection of an incoming signal for the
case of a 4–layered WP is shown in Fig. 2. Basically, the
whole binary tree is first obtained and subsequently pruned
according to the Shannon entropy as proposed in [6]. The
broken lines in Fig. 2 correspond to the rejected branches,
while the others give the filter bank for processing the inco-
ming signal. Accordingly, different filter banks are used to
process when the input signal is split in blocks.

3. EMBEDDED WAVELET PACKETS (EWP)
ALGORITHM

This compressor does not need any signal preprocessing as
QRS complex detection and noa priori signal knowledge is
required. It works over non–overlapped blocks ofN samples
each of the incoming signal as follows:
1. Decompose every input block using WP.
2. Encode the coefficients with an EZW–based embedded

algorithm.
3. Entropy-code the significance map.
The embedded algorithm is carried out as a successive ap-
proximations that are applied to each group ofN coeffi-
cients obtained from the correspondingN incoming samples.

x[n] x[n]

Low pass
branch

High pass
branch

ANALYSIS
FILTER
BANK

SYNTHESIS
FILTER
BANK

Figure 2: Example of WP for a depht of four layers. The broken
lines correspond with the pruned branches.
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Figure 3: Alphabet for the significance map.

Basically, it consists of applying a sequence of thresholds
ε0,ε1, · · · ,εL−1 in successive steps to obtain the correspon-
ding significance maps associated to each threshold. At each
iteration, the threshold is successively updated at the half of
the prior value:εi =

εi−1
2 . Let {ci},∀i = 1, · · · ,N be the set

of WP coefficients; the first threshold valueε0 = 2p, p∈ Z is
chosen in such a way that

p =

⌊

log2

(

max
c∈{ci}

{|ci |}

)⌋

, (3)

where⌊·⌋ denotes rounding to the next smaller integer. Given
p, the following threshold isε1 = 2p−1 and so on. Two lists
must be maintained while the encoding (and decoding) pro-
cess proceeds: The dominant list (DL) contains all the coef-
ficients found significant to the current and prior thresholds,
and the subordinate list (SL) contains its magnitudes. Initia-
lly, DL equals the coefficients resulting of the transform of
the corresponding incoming block, and SL is empty. These
lists are updated at every iteration.

For every iteration, i.e., for every successive thresholds,
the dominant pass and the subordinate pass are accomplis-
hed. During the dominant pass, coefficients in DL are com-
pared with the threshold, e.g.ε0 = 2p for the first iteration.
Then, the significance map is encoded as explained in Fig.
3 with an alphabet made of three symbols:{POS, NEG,
IZ}. The magnitude of the significant coefficients (encoded
either as{POS} o {NEG}) is included in SL. Subsequently,
the significant coefficients are zeroed in DL to avoid being
significant at the following iteration. The reconstructed mag-
nitude of a significant coefficient to the threshold 2p on the
decoder side is|ĉi | = 2p + 2p−1. The sign is taken from the
corresponding code in the significance map.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Coefficient value

2
p

0 2
p-1

2
p-2

‘1’

2
p-3

‘1’‘0’

‘0’

‘1’‘0’

2
p-1

+2
p-2

Value initially assigned

2
p-4

Figure 4: Example of successive refinement of a coefficient. The
curved solid line arrows point at the final values once the refinement
bit is successively assigned

Once the dominant pass is finished, the subordinate pass
is carried out. The aim of the subordinate pass is to improve
the accuracy of all the previous significant coefficients (those
included in LS) by means of a refinement bit. Figure 4 shows
the subordinate pass applied successively three times to a
coefficient, which is significant to the threshold of the second
iteration (for p−1). Its initial value is|ĉi,1| = 2p−1 + 2p−2.
For this current threshold, there is an interval of uncertainty
whose whidth is 2p−2. The actual coefficient value is in the
upper half of the uncertainty interval, so a ‘1’ is assigned as
refinement bit the first time that the subordinate pass is ap-
plied and the reconstructed coefficient is|ĉi,2|= |ĉi,1|+2p−2.
The updated value in the refinement pass is pointed by the
curved solid line arrow in Fig. 4. In the following iteration
(for p = p−2), the width of the uncertainty interval is 2p−3

and a ‘0’ is the assigned refinement bit as the actual coef-
ficient value is in the lower half, yielding the reconstructed
coefficient|ĉi,3|= |ĉi,2|+2p−3. Once again, for the following
iteration, the refinement bit is ‘0’ so the coefficient takes va-
lue |ĉi,4| = |ĉi,3|+2p−4. All the coefficients found in the SL
are refined as above in each iteration. To do so, the encoder
generates the refinement list (RL), which contains the refine-
ment bits to be used by the decoder.

The encoding and decoding process is summarized fo-
llowing. From the encoder side, let{ci},∀i = 1, · · · ,N be the
set of WP coefficients:

Step 1 Outputp =

⌊

log2

(

max
c∈{ci}

{|ci |}

)⌋

Step 2 Initialization of lists:
(a) DL = {ci}, ∀i = 1, · · · ,N.
(b) SL= {φ}.

Step 3 Dominant pass:
(a) DL(i), ∀i = 1, · · · ,N, is encoded as in Fig.

3.
(b) If DL(i) is significant, its magnitude is in-

cluded in SL and DL(i) = 0 is done.
Step 4 Subordinate pass: The refinement list is

generated.
Step 5 p = p−1 and go toStep 3.

Conversely, the decoder performs as follows:
Step 1 Initialization of lists:

(a) DL = {ci}, ∀i = 1, · · · ,N.
(b) SL= {φ}.

Step 2 Initial thresholdp is received.
Step 3 Dominant pass:

(a) {POS}: DL(i) = 2p+2p−1 and its magni-
tude is included in SL.

Bits for
approximation 1

S bits

Run-length code of
significance map

Refinement list

B bits

Header

Bits for
approximation 2

Bits for
approximation L

Figure 5: Coding of a block.

(b) {NEG}: DL(i) = −(2p + 2p−1) and its
magnitude is included in SL.

(c) {IZ}: nothing is done.
Step 4 Subordinate pass: coefficients inSL are

refined after receivingRL.
Step 5 p = p−1 and go toStep 3.

To encode the significance map, a bit ‘1’ marks a significant
coefficient so that the following indicates the sign: ‘11’ is
used for{POS} and ‘10’ for {NEG}. Non-significant coeffi-
cients corresponding to the symbol{IZ} are marked by ‘0’
and are run-length encoded. Every time{IZ} appears, the
next B1 bits are used to encode the number of consecutive
{IZ} symbols. In case of overflow,B2 bits more are used.
Therefore, 2B1 + 2B2 − 1 consecutive symbols can be enco-
ded. In this work, the corresponding values areB1 = 5 and
B2 = log2N, whereN is the total number of samples in the
block.

Giving the above, the stream for every incoming block
consists of a header followed by groups of bits with the num-
ber of groups equal to the number of approximations made
for the corresponding segment, as is shown in Fig. 5, where it
is supposed that L approximations have been achieved. The
resulting run–length coding of the significance map must be
enclosed followed by the stream of refinement bits for every
iteration. The header must contain the initial threshold and a
word indicating the corresponding basis decomposition. By
maintaining a table with the decomposition bases, the length
of the word will depend on the amount of possible basesAn
given by Eq. (2). Thus, the number of bitsH to represent the
word that indicate the WP filter bank can be calculated as

H = ⌈log2(An)⌉, (4)

where⌈·⌉ denotes rounding to the next larger integer. At
the end, both the encoding and the decoding processes finish
once the compression ration (CR) is reached.

4. RESULTS

4.1 Reference algorithm

In order to show the performance of the proposed algorithm,
we implemented the conventional EZW compression algo-
rithm [2][3] to compare. In this case, the alphabet of the
significance map has four symbols, so 2 bits are used for
each symbol. Both{ZTR} and{IZ} symbols are run–length
encoded as explained before, whereB1 andB2 are 2 and 8
respectively. The bit stream for every incoming block is as
in Fig. 5, but as EZW algorithm utilizes the DWT, no word
indicating the basis has to be included in the header.
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Figure 6: Results from the experiment showing PRD1 against CR.

4.2 Specifications of decomposition method

WP was studied for the design of a thresholding–based ECG
compressor in [7]. Therefore, to accomplish the evaluation
of the method proposed in this work, the design of the de-
composition method is based on that reported in [7], which
is as follows:

• The number of layers for DWT and WP are up to 4.
• Based on the good results reported by other authors

[3, 8], we utilize the Cohen–Daubechies–Feauveau 9/7
(bior9.7). Results are also shown with the 14–tap Daube-
chies orthogonal wavelet

Moreover, the number of samplesN per block of incoming
signal is 1024 which is the size most commonly used by other
authors [3][8][9].

4.3 Performance measurement and database

The quality of the retrieved signal is measured using the Per-
centage Root–mean–square Difference (PRD):

PRD=

√

√

√

√

√

√

√

N
∑

n=1
(x[n]− x̂[n])2

N
∑

n=1
(x[n])2

×100, (5)

wherex[n] is the original signal and ˆx[n] the reconstructed
signal. This parameter depends on the mean value of the
original signal, so it is thus strongly recommended that the
following criteria be used [10]:

PRD1 =

√

√

√

√

√

√

√

N
∑

n=1
(x[n]− x̂[n])2

N
∑

n=1
(x[n]− x̄[n])2

×100, (6)

wherex̄[n] is the mean value of the signal.

Table 1: Comparison of the proposed algorithm with other methods.

Method Signal CR PRDa PRD1 PRDcc
117 8 1.5070 5.4681 0.2889

Proposed method 11 2.0588 7.4703 0.3947
(EWP) 232 7 5.8204 11.3139 0.2855

9 7.7282 15.0223 0.3791
Djohan[11] 117 8 3.9 — —
Hilton[3] 117 8 2.6 — —
Lu[8] 117 8 1.18 — —
Rajoub[12] 117 10.7996 — — 0.4808

232 4.3141 — — 0.3005
Benzid[9] 117 16.24 2.55 — —

232 9.04 — — 0.2981

aPRD has been obtained with (5) after removing the 1024–baseline;
PRD1 has been obtained with (6) and PRDcc with (5) but with the corres-
ponding baseline included.

As the incoming signal is split in segments of 1024 sam-
ples (N = 1024), the compression ratio can be calculated as

CR=
N×11

S
, (7)

where S is the bit stream for every input block (Fig. 5).
The tests utilize the MIT-BIH Arrhythmia Database.

Every file from that database holds two leads sampled at 360
Hz with a resolution of 11 bits per sample. A baseline of
1024 has been added to each ECG for storage purposes that
is removed before processing.

4.4 Experiment results

The experiment is carried out over both 10-minutes long
leads extracted from records 100, 101, 102, 103, 107, 109,
111, 115, 117, 118 and 119 from the MIT–BIH Arrhythmia
Database. This dataset was proposed in [8] and it consists
of a variety of signals with different rhythms, QRS complex
morphologies and ectopic beats. Figure 6 shows the perfor-
mance of the proposed compressors compared with the con-
ventional EZW. The CR is in the horizontal axis because is
the target parameter and can be considered as the indepen-
dent variable. As can be seen, the WP–based proposed com-
pressor yields improved performance over the conventional
EZW technique in the full range of CR values.

The comparison of the proposed method with other
works is given in Table 1. The results have been obtained
over the first 1–minute long lead of the corresponding re-
cords. Several cells in Table 1 are empty because not all
the authors utilize all the measurement parameters, so the re-
sults of other authors are placed in the cell corresponding to
the measure they have used to test. The proposed algorithm
clearly improves the method presented in [12].

5. CONCLUSIONS

An ECG quantization algorithm based on the EZW for use
with WP is presented. Since the hierarchical relationship
among WP coefficients is difficult, zerotrees are not encoded
reducing the alphabet of the significance map to three sym-
bols. Thus these new algorithm become easier than the con-
ventional EZW and make it possible to used to other kind of
decomposition structures like conventional filter banks. Furt-
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hermore, it reports good compression ratios compared to ot-
her methods.
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UAH2005/021 from both the Autonomous Community of
Madrid and the University of Alcalá.
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