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ABSTRACT
Kernel-target alignment has recently been proposed as a criterion
for measuring the degree of agreement between a reproducing ker-
nel and a learning task. It makes possible to find a powerful kernel
for a given classification problem without designing any classifier. In
this paper, we present an alternating optimization strategy, based on a
greedy algorithm for maximizing the alignment over linear combina-
tions of kernels, and a gradient descent to adjust the free parameters
of each kernel. Experimental results show an improvement in the
classification performance of support vector machines, and a drastic
reduction in the training time.

1. INTRODUCTION

The last ten years have seen an explosion of research in ker-
nel methods; see [1] for a recent survey. These include sup-
port vector machines (SVM), which map data into a high di-
mensional space where the classes of data are more readily
separable, and maximize the margin – or distance – between
the separating hyperplane and the closest points of each class.
However, despite the success of kernel machines, the selec-
tion of an appropriate kernel is still critical for achieving good
generalization performance. A typical approach for kernel
selection involves the following steps: choose some kernels
before learning starts, estimate their performance from cross-
validation experiments, and pick the best one. This strategy
becomes intractable as the number of kernels increases.

Observing that all the information required by a kernel
machine is contained in the so-called Gram matrix, a recent
work has suggested to learn it from data [2]. Another inter-
esting solution was developed through the concept of kernel-
target alignment [3]. In this reference and in [4], the ap-
proaches for optimizing this criterion are limited to a trans-
ductive setting. The kernel matrices are of the form

K =
∑

i

µiviv
t
i , µi ≥ 0, (1)

where the vi’s are the eigenvectors of the full kernel matrix
constructed from training and test samples. An inductive pro-
cedure was also proposed in [4], based on the eigendecompo-
sition of the training kernel matrix. Unfortunately, these sub-

space methods become extremely computationally expensive
when dealing with large kernel matrices. A more efficient
approximation strategy based on the Gram-Schmidt decom-
position and a quadratic programming method (QP) was pre-
sented in [5]. A semi-definite programming approach (SDP)
was also considered in [6]. The authors, however, concede
that the SDP applied to the kernel matrix (1) boils down to
the quadratic program described in [3]. In this paper, we pro-
pose an alternating optimization strategy, based on a greedy
algorithm for maximizing the alignment over linear combi-
nations of kernels, and combined with a gradient descent to
adjust the free parameters of each kernel.

The rest of this paper is organized as follows. In Section 2,
kernel-target alignment is introduced. Our fast algorithm for
optimizing this criterion is presented in Sections 3 and 4. Its
effectiveness is confirmed through simulations in Section 5.
Finally, concluding remarks and suggestions follow.

2. KERNEL-TARGET ALIGNMENT

We start with a few basic definitions. Let X be a compact
space. A symmetric function κ : X ×X → IR verifying

n
∑

i=1

n
∑

j=1

aiajκ(xi, xj) ≥ 0

for all n ∈ IN, x1, . . . , xn ∈ X and a1, . . . , an ∈ IR is said
to be a Mercer kernel. An explicit way to describe it is via a
mapping φ from X to a reproducing kernel Hilbert spaceH

κ(xi, xj) = 〈φ(xi), φ(xj)〉H.

The alignment criterion is a measure of similarity between
two kernels, or between a kernel and a target function [3].
Given a n-sample data set Sn, the alignment of kernels κ1

and κ2 is defined as follows

A(K1, K2) =
〈K1, K2〉F

√

〈K1, K1〉F 〈K2, K2〉F
, (2)

where 〈·,·〉F denotes the Frobenius inner product, and K1 and
K2 are the Gram matrices with respective entries κ1(xi, xj)
and κ2(xi, xj), for all xi, xj ∈ Sn.
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For binary classification, the decision statistic should sat-
isfy φ(xi) = yi, where yi is the class label of xi. By setting
yi = ±1, the ideal Gram matrix would be given by

K∗(i, j) = 〈φ(xi), φ(xj)〉 =

{

1 if yi = yj

−1 if yi 6= yj .
(3)

In [3], Cristianini et al. propose to maximize the alignment
with the target K∗ = yyt in order to determine the most
relevant kernel for a given classification task.

A(K, K∗) =
〈K, yyt〉F

√

〈K, K〉F 〈yyt, yyt〉F
=

ytKy

n ‖K‖F
. (4)

The ease with which this criterion can be estimated using only
training data, prior to any computationally intensive training,
makes it an interesting tool for kernel selection. It has been
shown that the alignment is concentrated, ie the probability
of the empirical estimator (4) deviating from its mean can
be bounded by an exponentially decaying function of this
deviation [3]. This means that if one optimizes the align-
ment on a training set, one can expect it to remain high on
a validation set. It has also been demonstrated that h(x) =
sgn(IEx′,y′ [y′κ(x′, x)]) has good generalization performance
when the alignment is high.

3. OPTIMIZING THE LINEAR COMBINATION OF
KERNELS BY A GREEDY APPROACH

Any positive linear combination of Mercer kernels is a Mercer
kernel [7]. Given a collection of m kernels, we then consider
the kernel expansion

κµ(x, x′) =

m
∑

i=1

µi κi(x, x′), µi ≥ 0, (5)

and study the problem of determining the parameters µi that
maximize the kernel-target alignment. For a classification
task, this problem can be written as [4]

maxµ −µt(H + λI)µ + f tµ

subject to µi ≥ 0, for all i = 1, . . . , m
(6)

with I denoting the identity matrix, H(i, j) = 〈K i, Kj〉F
and f (i) = 〈Ki, K

∗〉F . The parameter λ ≥ 0 arises from
a regularization constraint penalizing ‖µ‖2. As for SVM op-
timization, large values of m make the resolution of equa-
tion (6) time and memory consuming with standard QP meth-
ods. Our strategy to handle this problem is to divide it into
subproblems. When applied to (6) with m = 2, this leads to
the maximization of

W (µ1, µ2) =

−µ2
1(‖K1‖

2

F + λ)− µ2
2(‖K2‖

2

F + λ)
−2 µ1 µ2〈K1, K2〉F + µ1 〈K1, K

∗〉F + µ2 〈K2, K
∗〉F

subject to µ1, µ2 ≥ 0. Optimality conditions ∂W/∂µ1 = 0
and ∂W/∂µ2 = 0 yields

(‖K1‖
2

F + λ)µ1 + 〈K1, K2〉F µ2 =
〈K1,K∗〉

F

2
,

〈K1, K2〉F µ1 + (‖K2‖F + λ)µ2 =
〈K2,K∗〉

F

2
.

Hence, the solution of the unconstrained problem is

µ∗
1 =
〈K1, K

∗〉F − 2〈K1, K2〉F µ∗
2

2 [‖K1‖
2

F + λ]

with

µ∗
2 =

(‖K1‖
2

F + λ)〈K2, K
∗〉F − 〈K1, K2〉F 〈K1, K

∗〉F
2 [(‖K1‖

2

F + λ)(‖K2‖
2

F + λ)− 〈K1, K2〉
2

F ]
.

If µ∗
1, µ∗

2 > 0, the latter is the optimal solution of the con-
strained problem since it lies in the feasible region. Consider
the case µ∗

1, µ∗
2 ≤ 0. Because K1 and K2 are positive (semi)-

definite matrices, the alignment of µ∗
1K1+µ∗

2K2 is negative.
This result cannot be optimal since (µ1, µ2) = (1, 0) leads to
a positive alignment. We then conclude that this case cannot
arise. Finally, suppose that µ∗

1 > 0 and µ∗
2 < 0. Starting

from a feasible point, the feasible direction method [8] pro-
vides the constrained solution µ+

1 > 0 and µ+
2 = 0. Note that

the alignment criterion is invariant under scale changes, that
is, A(µ+

1 K1, · ) = A(K1, · ). This implies that µ+
1 can be

arbitrarily fixed to 1. As a conclusion, the general solution to
problem (6) in the m = 2 case is

(µ+
1 , µ+

2 ) =







(µ∗
1, µ

∗
2) if µ∗

1, µ
∗
2 > 0

(1, 0) if µ∗
2 ≤ 0

(0, 1) if µ∗
1 ≤ 0.

(7)

Let J(t) = maxµ≥0A
(
∑

i∈It
µiKi, K

∗
)

with It a set of
indexes. It can be shown that

I1 ⊂ I2 ⊂ . . .⇒ J(1) ≤ J(2) . . .

This property means that the alignment of the linear combina-
tion of a subset of kernels should not be better than any larger
set containing the subset. This suggests the use of a greedy
strategy to combine more than two kernels. It starts from the
best available kernel in the sense of (4). Next it determines
the coefficients (µ+

1j∗ , µ+
2j∗) that maximize the kernel-target

alignment of

K̂(j) = µ+
1j

(

∑

i∈I

µiKi

)

+ µ+
2j Kj , j 6∈ I, (8)

where I ⊂ {1, . . . , m} contains the indexes of the kernels
selected previously. This process is repeated until the align-
ment cannot be improved by more than ε ≥ 0, see Table 1.
This strategy is obviously suboptimal. However, the update
rule (8) is not subject to ill-conditioned Hessian since the so-
lutions are calculated analytically. As can be seen in Sec-
tion 5, it leads to solutions as good as, and sometimes better
than those obtained by solving (6) with standard QP methods.
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Choose j∗ = arg maxj A(Kj , K
∗)

Set K̂ = 0, µ = (0 0 ... 0)t, µ+

1j∗ = 0 and µ+

2j∗ = 1.

Do

Add j∗ to the set of indexes I: I = I ∪ {j∗}

Update K̂ and µ as follows:

K̂ = µ
+

1j∗K̂ + µ
+

2j∗Kj∗

µ = µ
+

1j∗µ, µj∗ = µ
+

2j∗

For all j 6∈ I

Maximize A(µ1jK̂ + µ2jKj , K
∗) using (7)

Choose j∗ = arg maxj 6∈I A(µ+

1jK̂ + µ+

2jKj , K
∗)

While A(µ+

1j∗K̂ + µ+

2jKj , K
∗) −A(K̂, K∗) > ε

Return K̂ and/or µ

Table 1. The greedy algorithm

4. OPTIMIZING THE KERNEL PARAMETERS BY A
GRADIENT STEP

Previously, we have supposed that the parameters of the ker-
nels were available from previous calculations. Here, we re-
lax this assumption by iteratively adjusting them during the
calculation of the solution (8). Let us rewrite the model (5) as

κµ(x, x′;Θ) =

m
∑

i=1

µi κi(x, x′; θi) (9)

with Θ = (θ1, . . . , θm), and θi the parameters of κi. Ideally,
the model parameters should be obtained by maximizing the
kernel-target alignment

Θ
∗ = argmax

Θ

A(KΘ, K∗) = arg max
Θ

〈KΘ, K∗〉F
‖KΘ‖F

,

where KΘ is the Gram matrix of the kernel (9). Let us restrict
ourselves to the case where this kernel can be differentiated
with respect to Θ. We have

∂〈KΘ, K∗〉F
∂θk

=
∑

i,j

yi yj

∂κµ(xi, xj ;Θ)

∂θk

, 〈∂kKΘ, K∗〉F

and

∂‖KΘ‖F
∂θk

=





∑

i,j

∂κµ(xi, xj ;Θ)

∂θk

κµ(xi, xj ;Θ)









∑

i,j

κµ(xi, xj ;Θ)2





− 1

2

(10)

= 〈∂kKΘ, KΘ〉F /‖KΘ‖F . (11)

We can then express the derivative of the alignment with re-
spect to θk as follows

∂A(KΘ, K∗)

∂θk

=
〈∂kKΘ, K∗〉F
‖K∗‖F ‖KΘ‖F

−
〈KΘ, K∗〉F 〈KΘ, ∂kKΘ〉F

‖K∗‖F ‖KΘ‖
3

F

.

(12)

In the spirit of [9], we propose an algorithm that alternates
the optimisation of a linear combination of kernels, see Ta-
ble 1, with a gradient step in the direction of the gradient of
A(KΘ, K∗) in the parameter Θ space, see (12). This can be
achieved by the following iterative procedure:

1. Initialize Θ to some value;

2. Using our greedy algorithm, find µ∗ for Θ fixed;

3. For all µi > 0, update θi such that A(KΘ, K∗) is
maximized. This can be achieved by a gradient ascent

θi ← θi + η∇θi
A(KΘ, K∗)

until a given stopping criterion is met;

4. Go to step 2. or stop when the maximum ofA(KΘ, K∗)
is reached.

5. EXPERIMENTS

To compare our greedy algorithm with a standard QP strat-
egy, experiments were conducted on a Pentium 4, 3.4 GHz,
2GB RAM with the benchmark1 breast cancer Wisconsin. It
was randomly divided into a training set of 466 instances and
a test set of 233 instances. Six kernels (m = 6) were selected
from the family of polynomial kernels: (1 + γ〈x, x′〉)q with
q = 1, . . . , 4, gaussian kernels: exp (−‖x− x′‖2/2σ2) and
exponential kernels: exp (−‖x− x′‖/2σ2). The free param-
eters γ and σ were chosen in the range ]0; 10] in such a man-
ner that the composite kernel (5) obtained by the QP approach
was composed of 3 different candidates. The threshold ε con-
trolling the sparsity of the solution, see Table 1, was set to
10−3. This resulted in solution with 2 nonzero µi’s for our
algorithm. In both cases, the gaussian kernel was combined
with the 3rd degree polynomial kernel. The 4rd degree polyno-
mial kernel was also involved in the QP solution, with a very
small weight – about 10−14. On Table 2, one can notice that
the alignment obtained with our algorithm led to a substantial
improvement compared to QP, which partly failed to converge
due to ill-conditioned Hessian. In both cases, the alignment
of the composite kernels remained high on the validation set.
Figure 1 compares the computation time as a function of the
number m of candidate kernels. We observe that our algo-
rithm is much less time-consuming than the QP strategy for
large m.

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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training test # of kernels
alignment (QP) 0.5667 0.5012 3

alignment (greedy) 0.2198 0.2168 1
” 0.6375 0.6039 2

Table 2. Alignment of the composite kernel κµ. The per-
formance of the kernel that was first selected by the greedy
algorithm is also mentioned.

alignment error
`1-SVM using κopt 0.2313 5.14%
`1-SVM using κµ (QP) 0.5667 3.58%
`1-SVM using κµ (greedy) 0.6396 3.37%
`2-SVM using κopt 0.2411 3.58%
`2-SVM using κµ (QP) 0.5667 2.93%
`2-SVM using κµ (greedy) 0.6396 2.79%

Table 3. Alignment and error rate of SVM with κopt and κµ.

Our greedy approach was next coupled with a gradient de-
scent to jointly adjust the free parameters of the 6 candidate
kernels. The gradient step η was set to 0.5, and the gradient
descent was stopped when the improvement of the alignment
was less than 10−5. The same stopping-criterion was used
in step 4 of our alternating optimization scheme. The final
values of the alignment were 0.6396 and 0.6093 on the train-
ing and test sets, respectively. Figure 2 shows the evolution
of the alignment during the gradient descent. As suggested
by the concentration property of the criterion, one can note
that improving the alignment on the training set improved the
alignment on the test set. Finally, the composite kernels were
used with `1-SVM and `2-SVM classifiers. They were trained
with C in {1, 10, 100}, and tested using 5-fold cross valida-
tion. Each kernel of the set of candidate kernels was also
tested individually to determine the best one, denoted by κopt.
The performances of the kernels κµ and κopt are reported in
Table 3. These results show that the composite kernels outper-
formed the kernel κopt, and give an advantage to our gradient-
based greedy algorithm over the QP approach. We observed
that the computation time required to exhibit κopt, including
the training and the cross-validation stages, was about 6 times
longer.

6. CONCLUSION

We presented a method for automatically optimizing the align-
ment of a linear combination of kernels while adjusting their
free parameters in a data-dependent way. This led to an im-
provement of the performance of SVM in a binary classifica-
tion context, and a drastic reduction of the time usually spent
to pick a good kernel. Direct extensions of this work include
multi-class and regression applications.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

PSfrag replacements

m

time

QP

tim
e

our algorithm

Fig. 1. Computation time, in seconds, as a function of the
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Fig. 2. Evolution of the alignment during gradient descent.

7. REFERENCES

[1] J. P. Vert, K. Tsuda, and B. Schölkopf, “A primer on kernel methods,”
in Kernel Methods in Computational Biology, B. Schölkopf, K. Tsuda,
and J. P. Vert, Eds. Cambridge, MA: The MIT Press, 2004, pp. 35–70.

[2] S. Vishwanathan, O. Guttman, K. Borgwardt, and A. Smola, “Kernel
extrapolation,” National ICT Australia, Tech. Rep. 005027, 2005.

[3] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, “On
kernel-target alignment,” Advances in Neural Information Processing
Systems, vol. 14, pp. 367–373, 2002.

[4] J. Kandola, J. Shawe-Taylor, and N. Cristianini, “On the extensions
of kernel alignment,” Department of Computer Science, University of
London, Tech. Rep. 120, 2002.

[5] ——, “Optimizing kernel alignment over combinations of kernels,” De-
partment of Computer Science, University of London, Tech. Rep. 121,
2002.

[6] G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, L. El Ghaoui, and M. I.
Jordan, “Learning the kernel matrix with semi-definite programming,”
Proc. of the nineteenth International Conference on Machine Learning,
pp. 323–330, 2002.

[7] M. G. Genton, “Classes of kernels for machine learning: a statistics
perspective,” Journal of Machine Learning Research, vol. 2, pp. 299–
312, 2001.

[8] G. Zoutendijk, “Methods of feasible directions: a study in linear and
non-linear programming,” in Proc. of the 21st International Conference
on Machines Learning. Elsevier, 1970.

[9] O. Chapelle and V. Vapnik, “Choosing multiple parameters for support
vector machines,” Machine Learning, vol. 46, no. 1-3, pp. 131–159,
2003.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


