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ABSTRACT have been made to circumvent this limitation, in particu-

A method is proposed for estimating chirp signals em- 'ar by identifying chirp-like components and excising them
bedded in nonstationary noise, with the twofold objective Prior @pplying the multitaper machinery [3, 4]. The pur-
of a sharp localization for the chirp components and a re- pose of th|s.paper IS to a_v0|d such a compllcgUon and to
duced level of statistical fluctuations for the noise. The rather combine multitapering (for a sake of variance reduc-

technique consists of combining time-frequency reassign-10N) With reassignment (for localization).

ment with multitapering. The principle of the method is

outlined, its implementation based on Hermite functionsis 2. NONSTATIONARY SPECTRUM ESTIMATION

justified and discussed, and some examples are provided for

supporting the efficiency of the approach, both qualitatively Defining a time-varying “spectrum” for a nonstationary pro-

and quantitatively. cess{z(t),t € R} is a question that has no unique answer
[7]. Among the various possibilities stands first iMgner-

1. INTRODUCTION Ville Spectrum(WVS), whose definition reads:

In nonstationary contexts, it is well-known [7] that Fourier- W.(t, f) = /+°° E {x (t . z) - (t B j) } o127 fT g
based methods of (time-varying) spectrum estimation are ’ o 2 2 ’
classically faced with intrinsic limitations and different kinds

of trade-offs: {) from a statistical point of view, the usual Wwheret andf refer to time and frequency, respectively, and
bias-variance trade-off inherent to any estimation procedure{.} stands for the expectation operator. This definition,
is amplified when analyzing nonstationary stochastic pro- though not unique, presents the advantage of extending the
cesses by the fact that time-averaging, aimed at reducingusual concept oPower Spectrum DensifPSD) and mak-
variance, introduces some bias not only in the frequency di-ing it time-dependent in a rather natural way. Without en-
rection but also in time;ii) from a geometrical perspective, tering into much details, it is worth recalling that the WVS
windowing — aimed at guaranteeing a form of local sta- reduces to the PSD for all times if the analyzed process
tionarity — ends up with a different kind of trade-off related happens to be stationary. Moreover, its marginal distribu-
to the time-frequency localization in the case of chirp-like tions are directly related to meaningful quantities (variance
signals. Such difficulties have been recognized long ago,in time, Loéve’s distribution function in frequency) and it
and numerous studies have tried to address the problem. Aglso satisfies the important property of preserving supports,
far as localization is concerned, Wigner-based approachesn both time and frequency.

have been developed and shown to outperform windowed If we now introduce the (non random) quantity

(Fourier or wavelet-based) methods, at least in the case of

noise-free single chirps [7]. In more realistic situations of TN . TN —iomfr
multi-chirps, a dramatic improvement over both Fourier and Wa(t, f) = / v (t + 5) r (t - 5) ™I dr,
Wigner-based methods has come from the use of the so-

calledreassignmentechnique [1], with an efficiency thatis  which is referred to as th&figner-Ville Distribution(WVD),
however limited to the cases where the signal-to-noise ratiojt can be shown [7] that, under mild conditions, the WVS of

is high enough. Turning to the estimation issue in a statis- a process is nothing but the ensemble average of the WVDs
tical sense, different attempts have been made to advantagef all possible realizations of this process:

of the idea ofmultitapering pioneered by D.J. Thomson in

a stationary setting [12], and thanks to which an improved W (t, f) = E{W.(t, f)}. 1)
statistical stability can be obtained without having recourse

to a time-averaging step. As it has been extended to non-  Given one observed realization of a nonstationary pro-
stationary situations, the “classical” method of multitaper- cess, estimating the WVS amounts to find a substitute for
ing suffers however still from the time-frequency localiza- the unattainable ensemble average entering eq.(1). One stan-
tion trade-off mentioned above [4, 5, 9, 13]. Some attempts dard way is to assume fax(t) a form of local stationarity in
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both time and frequency, i.e., some locally slow evolution of not belong to this line, a non-zero contribution is never-
the actual WVS in the two directions. Such an assumption theless obtained as long as the line passes through the lo-
paves the road for a replacement of the ensemble average atal time-frequency window (whose joint support cannot be
a given time-frequency location by a local smoothing over made arbitrarily small). Reasoning by a mechanical anal-
a neighbouring domain. This idea can be formalized by in- ogy identifying energy with mass, the situation is as if a
troducing as a family of WVS estimators the quantity [7]:  whole distribution of mass within a domain (here, the time-
N frequency window) would be replaced by one single num-
A ° ber (the total mass) assigned to gemmetricatenter of the

We(t, f) = // We(s, &) (s —1,€ = f) ds d¢, (2) domain. Such an assignment is clearly not well adapted to
T situations where the distribution is not uniform over the do-

wherell(t, f) is some time-frequency smoothing kernel. ~ main. In such cases, a much more meaningful assignment
This expression, which turns out to coincide wWitlo- is thecenter of massvithin the domain. This is precisely
hen’s clasg7] (thereafter denoted’, (¢, f;1I)) for the ob- the essence of the reassignment technigue, which consists

served realization, offers a unified setting in which the two in evaluating for each time-frequency location, not only the
trade-offs mentioned previously (regarding fluctuations and integrated signal WVD within the domain defined by the
localization) appear clearly. If we consider the toy example Window WVD (in other words, the spectrogram value at
of a linear chirp embedded in broadband noise, the fluctu- this point), but also the center of mass of the signal WVD,
ations of the WVD due to noise will be smoothed out pro- & location that is possibly different from the window WVD
vided that the kernel in eq.(2) is low-pass. However, the center and to which the spectrogram value is reassigned. In
WVD of the linear chirp (which has the unique property of the |deaI|zed' case where one smglg I'|near chirp is “seen”
being perfectly localized along the instantaneous frequencythrough the time-frequency window, it is clear that the cen-
[7]) will be smoothed out too. A way out is however possi- ter of mass necessarily belongs to the line along which the
ble by reconsidering the apparently contradictory issues of WVD is localized, thus guaranteeing a perfect localization
fluctuations reduction and localization at the light of the two ©f the spectrogram after its reassignment. o
refinements offered by reassignment and multitapers. Previous studies [1, 8] have shown that an efficient eval-
uation of the local centers of mags ¢, f; y) can be made
2.1. Reassighment implicitly, according to

Sincgbtlhe ﬁm_oot_hir:g kerrk1el in eq].c(Z)?spri?ri atrrk])ittrary, ﬁj . { toy = t+ Re{Fé(TDhZ)(t, f)/Fgg(h]z)(t, N
possible choice is to make use of a function that would be 2 e

itself the WVD of some signal(t) supposed to be reason- Jus = {0 )/ B 1)
ably well localized in both time and frequency, a property where the two additional windows needed in the computa-
that carries over to the time-frequency plane thanks to thetion are defined from the mother windawit) as(7 h)(t) =
structure of the WVD. Doing so, it is easy to show that we ¢ p(¢) and (Dh)(t) = (dh/dt)(t). Given the field of all

end up withC, (¢, f; W) = S8 (t, f), whereS{(t, f) above centrials, the reassigned spectrogr&s” (¢, ) at-

is nothing but thespectrogranof x(¢) with window h(t), a . )
time-frequency distribution that is usually rather expressed ta(?hed to the conventional spectrogrélﬁﬁb (¢, £) follows

as: as.
SM(t, f) = ‘F(h)(t n|’ ®) (h) g ; ;
2 f) = [P ] RSO ) = [ 05,8 81-1)8(1 o).

where -

+o0 , 2.2. Multitapers

EM(t, f) = / z(s)h*(s —t)e 27/ ds , _
' o In the case of a stationary process, the spectral characteriza-

] ) tion is fully described by means of the PSD(f), which

stands for th&hort-Time Fourier Transfor(STFT). could be thought of as:

A spectrogram appears therefore as an estimator for the
WVS, with the well-known time-frequency localization trade- 1| p+1/2
off attached to this type of distribution: the shorter the win- S.(f)= lim E{ — / z(t) e ft gt
dow h(t), the better the time localization, but the poorer T—o0 T\ ) 12
the frequency localization, andce versa In this respect
however, the alternative interpretation of the spectrogramIn practice, the above quantity is unattainable when only
as a smoothed WVD (according to eq.(2)) rather than as aone realization of finite duration is given. The Squared
squared STFT (according to eq.(3)) gives the clue for im- Fourier Transform (SFT) of a finite duration observation is
proving upon its localization limitations. Indeed, if we re- a crude, non consistent, estimator, whose variance is of the
call that the WVD of a linear chirp perfectly localizes on order of the squared PSD [11]. Since an improvement can
a time-frequency line, the spreading of any correspondingonly come from an averaging of (almost) uncorrelated esti-
spectrogram just comes from the fact that, when centeringmations, an ergodic argument suggests to first chop the ob-
the analysis window at some time-frequency point that doesservation into (almost) disjoint blocks and then average their
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SFTs. This procedure is usually referred to as the Welch 3. MULTITAPER TIME-FREQUENCY
method of averaged periodograms [11]. Adopting the no- REASSIGNMENT

tation of spectrograms, it turns out that the corresponding

(Welch) estimator can be written as: 3.1. Principle and implementation

The direct application of multitapering to nonstationary pro-
cesses consists in making the estimator (4) time-dependent

K
S = 2 DS 0. ), according to [9, 13}
k=1

X 1 E
| | STR() = Seuc(t, f) = 2= 3 SV ),
where the spacing\ = ¢, — t; between adjacertt,’s k=1
is of the order of the window length. Assuming that this
spacing will ensure an approximate decorrelation between
blocks, one can expect that the variance will be inversely
proportional to the numbek of blocks (i.e., roughlyT’/ A
for an observation of duratiof). Whereas variance can | X
be decreased this way by increasifig(to some extent), - = (h)
the finite duration constraint necessarily leads to shakten RS, rc(t, 1) K kz_:l RS ). ®)
increasing in turn the bias in frequency since a window of -
durationA has a frequency resolution of the orderlgi\. The rationale for this approach can be justified in a twofold

In order to circumvent this trade-off, D.J. Thomson sug- way: () as far as chirp components are concerned, reas-

gested [12] to still average SFTs stemming from (almost) SignMent increases localization in a way that can be made
uncorrelated sequences in order to reduce variance, but téndependent of the window, thus permitting (5) to act as a

construct such sequences by using for each of them the whofgPn€renaveraging; if) in noise regions on the contrary, the
data set so as to not sacrify bias. The way to achieve this>aM€ Windows lead to uncorrelated surrogate data whose
program consists in projecting the observation on a family iMe-frequency distributions are different, (5) acting in this
of basis functiong h(t), k € Z} that are orthonormal over case as a form ahcoherentaveraging tending to smooth

the observation interval. This results in a (Thomson) esti- the Iestltrn?te. ¢ timati it h
mator that can be written as: n stationary spectrum estimation, multitapers are cho-

sen as DPSSs because the data is of finite duration and esti-
mation concerns frequency only. In the nonstationary case,
L op 1 E there is noa priori reason to dissymmetrize time and fre-
S;}((f) == Zséhk)(o,f). (4) quency by choosing tapers that would be perfectly local-
k=1 ized in the time domain rather than in frequency. Indeed,
it makes much more sense to fully exploit the two degrees
of freedom offered by the time-frequency plane and, as sug-
Assuming that the spectrum can be considered as flatgested in [3, 4], to rather pick up those functions that max-
over a given bandwidtl3 associated with the expected fre- imally concentrate in time-frequency domains with elliptic
guency resolution, the basis can be obtained as the familysymmetry. As shown in [6], those functions are Hermite
of orthonormal functions (on the given time interval) that functions (HF), whose definition is given by
maximize their energy in the given frequency band. The so-

What we propose here is to adopt the same strategy, but ap-
plied to reassigned spectrograms, i.e., to consider as a WVS
estimator the quantity:

lution to this problem is given by the family of functions hi(4) = (—1)* 1 8 (D*~)(+

known as theProlate Spheroidal Wave Functioms, in a e =1 Vrl/22kE) 90 D).
discrete-time setting, as tiiEscrete Prolate Spheroidal Se- ) ) ) )
quencegDPSS) [11]. with g(t) := exp{—t?/2} andy(t) := g(itv/2) = exp{t*}.

Extending the approach to nonstationary situations is From a practical point of view, HFs can be computed recur-
I i — \/71/29k
appealing [9, 13]. The main reason is that the inconsis- SV, according tdu (¢) = Hy(t) g(t)/Vr!/22" k!, where

tency (and large variance) of a PSD estimator based on afhe{Hk(t% k € N} stand for the Hermite polynomials that

crude SFT directly carries over to spectrograms considereoObey the recursion:

as WVS estimators. The traditional way out would be to Hi(t) =2t He_1(t) — 2 (k — 2) Hy_o(t), k > 2,

smooth over time and frequency, but at the expense of fur-

ther increasing bias. In this respect, resorting to multitaperswith the initializationH,(¢) = 1 and H; (t) = 2.

allows for a variance reduction with a bias that only sticks Not only the HFs are orthonormal, but they also guar-
to the common length of the different windows. This is antee a perfect localization of the corresponding reassigned
certainly an improvement as compared to spectrograms andpectrograms in the case of a linear chirp, for &nyThis
smoothed spectrograms with respect to statistical efficiency,can be easily understood by noting that the WVD of a HF
but the question of time-frequency resolution still remains (which is basically a 2D Laguerre function) has elliptic sym-
not improved. Wedding multitapering with reassignment is metry [4, 6]. Recalling that the WVD is covariant with re-
therefore proposed as the key for such an improvement.  spect to dilations and rotations, it is enough to check that
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reassignment ends up with a perfect localization in the case sample spectro. sample reass. spectro. sample Wigner
of a pure tone, what can be done by an elementary calcula-
tion.

In the context of reassignment, HFs offer one further ad-
vantage, as compared to DPSSs. In the standard implemen-
tation of spectrogram reassignment, only the mother win-
dow h(t) has to be given and the two additional windows
(Th)(t) and(Dh)(t) that are needed are evaluated numer-
ically [2, 8]. This may cause difficulties, especially when
differentiating tapers whose orderis large, since they are
highly oscillating. This problem can be easily avoided when
using HFs since their successive derivatives obey a recur- . o average mean reass. speciro average Wigner
sion that can be explicitly plugged in the algorithm, namely

(Dhi)(t) = (Thi)(t) — V2(k + 1) hiy1(2).

Gauss window

3;,'“‘?‘7

sample mean spectro. sample mean reass. spectro.

10 Hermite tapers

10 samples

3.2. Examples and performance evaluation

Since the objective of multitaper time-frequency reassign- F19: 1. Comparison of noise WVS estimates Each diagram
represents a WVS estimate in the case of a white noise process

r_nent IS t? decreasel ﬂl.JCtuat'onS Véh'k.a r;])rﬁse{jvmiq Iogal!za— limited in time and frequency within the superimposed rectan-
tion, our first example Is concerned with the idealized Situ- - g,jar domain (ideally, the estimate should be constant over this
ation of a bandpass filtered Gaussian white noise within a rectangle and zero outside). The first row consists of a spec-
time-limited support. Although not strictly attainable (be- trogram, its reassigned version and the WVD, based on one re-
cause of the uncertainty relation), the modélt, ) for alization. The corresponding multitaper estimat&8 Hermite
the WVS of such an observation is the indicator function functions) are given in the middle row, whereas the bottom row
of a rectangle within the time-frequency plane. Figure 1 displays ensemble averages of such estimat@in@lependent
illustrates what happens in such a case by comparing the ;Zﬂéaé'ggséeaoglitggcvhv'g?;g;;mgr'gga}lsvr\]’;isz gﬁg}“?ﬁgqﬂl%@
WVD ag.d a Sarr_ple (reass_lgned) preCtg)Igrain W'ﬂ:_'the cor- vertical, and the energy is coded ;Ni'[h gray levels onla logarith-
responding multitaper estimates basedon= 10 Her- mic scale with a dynamic range 86 dB.
mite functions. The two effects of reduced fluctuations and
support preservation are clearly visible, and ensemble aver{arge K’s (from Stirling’s formula), leading to thé<—1/2
ages (based of) independent estimates) are also provided behavior for the mears, (¢, f). Although no proof is
for supporting the effectiveness of the approach and its im- available yet, the experiments reported in Figure 2 evidence
proved convergence rate as compared to an empirical estia similar behaviour for multitaper reassigned spectrograms
mate of the WVS. RS, k(t, f), but with a higher level of fluctuations. How-
Figure 1 gives a qualitative account of the behaviour of ever, when the area of the domdihis reduced, the situa-
the method, that can be supplemented by the more quantitation evolves quite differently for the two estimates: on the
tive performance measure one handS; x is smoother thaRS, x; on the other hand,
N RS, i is essentially confined to the non-zero support of
1 R the model, wherea$S,, x spreads outside this domain. The
T, /[m ‘Wx(u )= M(t, f)| dtdf, criterion (6) is a measure of this bias-fluctuations trade-off
(6) that is illustrated in Figure 2 for smaller and smaller do-

whereW (¢, f) stands for the WV'S estimats{ (¢, f) or mains, evidencing eventually crossings indicating that con-
RS, k(t, f)), the L-norm being here chosen so as to put ventional multitaper spectrograms may be outperformed by

emphasis on localization in the estimates. Figure 2 presentheir reassigned counterparts when localized components
results with different domains, all rectangular and centered @€ o be analyzed. o

in the analyzed time-frequency region, but with differentar- . In this respect, we consider in Figure 3 the case already
easD. In the pure white noise case where the model supportdiscussed in [4] and [S], with both a (nonlinear) chirp com-
identifies with the whole plane (in this case,= 256), we ~ Ponent and a (bandpass) time-varying noise. The effec-
observe for both spectrograms and reassigned spectrogranié/eness of the approach is clearly supported by this exam-
that the error measure behaves asymptoticallf &) o ple which evidences the good trade-off achieved between
K~1/2 when usingk tapers. In the spectrogram case, this time-frequency localization along the chirp and smoothness

can be justified by the fact that, for each taper, the valuesWlthln the (time-varying) frequency band of the noise.

are known to have &? distribution with2 degrees of free-

dom [11]. It then follows from the orthogonality of the ta- 4. CONCLUSION AND PERSPECTIVES

pers that the sum of th& first (Hermite) spectrograms is

alsoy? distributed, but witr2 X' degrees of freedom. Such A novel approach, combining reassignment and multitaper-
a distribution can be shown to have for absolute deviation ing, has been proposed for better estimating time-varying
4K X exp(—K)/T'(K), a quantity which varies a& /2 for spectra with possibly localized components. Due to space

B(K) =
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Hermite, Nx =512, Nfft = 256, Nh =127, D=256 64 16 4,R=10
T T T T T T

10*log10(L1-norm error)
A
7
D

|
)

-8t

. . . .
0.4 0.6 0.8 1 12
log10(K)

Fig. 2. Error measures in WVS multitaper estimatesFhe
figure plots, as a function of the numb&r of tapers, the error
measure (6) attached to multitaper (reassigned) spectrograms
when the model is a Gaussian white noise process limited in
time and frequency over a rectangular domain of afeaThe
simulations have been conducted (with ugfo= 30 Hermite
tapers, each of lengtivh = 127) on the basis ofR = 10
independent realizations df = 512 data points each, with

N fft = 256 frequency bins over the whole frequency range
[0,1/2). In the pure white noise situation (which corresponds
in the present case to the arda = 256), asymptotic decays in

K~1/2 (see text) have been superimposed as dotted lines.

sample spectro. sample reass. spectro.

sample Wigner mean reass. spectro.

Fig. 3. Comparison of signal+noise WVS estimatesEach

diagram represents a WVS estimate in the case of a nonlinear
chirp signal embedded in a bandpass time-varying noise limited
within the superimposed frequency band (ideally, the estimate

should be constant over this band, zero outside and perfectly [11]

localized along the chirp instantaneous frequency). The first

row consists of a spectrogram and its reassigned version, based [12]

on one realization. The corresponding multitaper estiméte (
Hermite functions) is given in the bottom row (right), with the
WVD (left) for comparison. In each diagram, time is horizontal,
frequency vertical, and the energy is coded with gray levels on
a logarithmic scale with a dynamic range 84 dB.

limitation, only the basic principles of the method have been
outlined, with no reference to many issues and variations
that can be envisioned. For instance, only the simplest way
(arithmetic averaging) of combining estimates with differ-
ent tapers has been considered here, but other types of av-
eraging are possible (see, e.g., [10]) as well as refinements
such as jacknifing the estimates [13], that might improve
upon the performance. Such developments are under cur-
rent investigation and will be reported elsewhere.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

&l

(10]

13]

5. REFERENCES

F. Auger and P. Flandrin, “Improving the readability of
time-frequency and time-scale representations by the reas-
signment method,IEEE Trans. Signal Pro¢vol. SP-43(5),

pp. 1068-1089, 1995.

F. Auger, P. Flandrin, P. Goncals and O. LemoineTime-
Frequency Toolbox foMATLAB. Freeware available at the
URL http://tftb.nongnu.org

M. Bayram and R.G. Baraniuk, “Multiple window time-
frequency analysis,” inProc. IEEE Int. Symp. Time-
Frequency and Time-Scale Analysi@aris, France), pp.
511-514, 1996.

M. Bayram and R.G. Baraniuk, “Multiple window time-
varying spectrum estimation,” iNonlinear and Nonstation-
ary Signal ProcessingW.J. Fitzgerald et al., eds.), pp. 292—
316, Cambridge Univ. Press, 2000.

F. Cakrak and P.J. Loughlin, “Multiple window time-varying
spectral analysis,IEEE Trans. Signal Pro¢vol. SP-49(2),
pp. 448-453, 2001.

P. Flandrin, “Maximum signal energy concentration in a
time-frequency domain,” ifProc. IEEE Int. Conf. Acoust.,
Speech and Signal Proc. — ICASSR’@Rew York, NY),
pp. 2176-2179, 1988.

P. Flandrin,Time-Frequency/Time-Scale Analy#sademic
Press, 1999.

P. Flandrin, F. Auger and E. Chassande-Mottin, "Time-
Frequency Reassignment — From Principles to Algorithms,”
in Applications in Time-Frequency Signal Processif#g
Papandreou-Suppappola, ed.), Chap. 5, pp. 179-203, CRC
Press, 2003.

G. Frazer and B. Boashash, “Multiple window spectrogram
and time-frequency distributions,” iRroc. IEEE Int. Conf.
Acoust., Speech and Signal Proc. — ICASSP(8dielaide,
AU), Vol. IV, pp. 293-296, 1994.

P.J. Loughlin, J. Pitton and B. Hannaford “Approximating
time-frequency density functions via optimal combinations
of spectrograms,”IEEE Signal Proc. Letf.vol. 1(12), pp.
199-202, 1994.

D.B. Percival and A.T. Walden,Spectral Analysis for the
Physical Science€€ambridge Univ. Press, 1993.

D.J. Thomson, “Spectrum estimation and harmonic analy-
sis,” Proc. IEEE vol. 70, pp. 1055-1096, 1982.

D.J. Thomson, “Multitaper analysis of nonstationary and
nonlinear time series data,” Monlinear and Nonstationary
Signal ProcessingW.J. Fitzgerald et al., eds.), pp. 317-394,
Cambridge Univ. Press, 2000.



