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ABSTRACT

A method is proposed for estimating chirp signals em-
bedded in nonstationary noise, with the twofold objective
of a sharp localization for the chirp components and a re-
duced level of statistical fluctuations for the noise. The
technique consists of combining time-frequency reassign-
ment with multitapering. The principle of the method is
outlined, its implementation based on Hermite functions is
justified and discussed, and some examples are provided for
supporting the efficiency of the approach, both qualitatively
and quantitatively.

1. INTRODUCTION

In nonstationary contexts, it is well-known [7] that Fourier-
based methods of (time-varying) spectrum estimation are
classically faced with intrinsic limitations and different kinds
of trade-offs: (i) from a statistical point of view, the usual
bias-variance trade-off inherent to any estimation procedure
is amplified when analyzing nonstationary stochastic pro-
cesses by the fact that time-averaging, aimed at reducing
variance, introduces some bias not only in the frequency di-
rection but also in time; (ii ) from a geometrical perspective,
windowing — aimed at guaranteeing a form of local sta-
tionarity — ends up with a different kind of trade-off related
to the time-frequency localization in the case of chirp-like
signals. Such difficulties have been recognized long ago,
and numerous studies have tried to address the problem. As
far as localization is concerned, Wigner-based approaches
have been developed and shown to outperform windowed
(Fourier or wavelet-based) methods, at least in the case of
noise-free single chirps [7]. In more realistic situations of
multi-chirps, a dramatic improvement over both Fourier and
Wigner-based methods has come from the use of the so-
calledreassignmenttechnique [1], with an efficiency that is
however limited to the cases where the signal-to-noise ratio
is high enough. Turning to the estimation issue in a statis-
tical sense, different attempts have been made to advantage
of the idea ofmultitapering, pioneered by D.J. Thomson in
a stationary setting [12], and thanks to which an improved
statistical stability can be obtained without having recourse
to a time-averaging step. As it has been extended to non-
stationary situations, the “classical” method of multitaper-
ing suffers however still from the time-frequency localiza-
tion trade-off mentioned above [4, 5, 9, 13]. Some attempts

have been made to circumvent this limitation, in particu-
lar by identifying chirp-like components and excising them
prior applying the multitaper machinery [3, 4]. The pur-
pose of this paper is to avoid such a complication and to
rather combine multitapering (for a sake of variance reduc-
tion) with reassignment (for localization).

2. NONSTATIONARY SPECTRUM ESTIMATION

Defining a time-varying “spectrum” for a nonstationary pro-
cess{x(t), t ∈ R} is a question that has no unique answer
[7]. Among the various possibilities stands first theWigner-
Ville Spectrum(WVS), whose definition reads:

Wx(t, f) =
∫ +∞
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wheret andf refer to time and frequency, respectively, and
E{.} stands for the expectation operator. This definition,
though not unique, presents the advantage of extending the
usual concept ofPower Spectrum Density(PSD) and mak-
ing it time-dependent in a rather natural way. Without en-
tering into much details, it is worth recalling that the WVS
reduces to the PSD for all times if the analyzed process
happens to be stationary. Moreover, its marginal distribu-
tions are directly related to meaningful quantities (variance
in time, Lòeve’s distribution function in frequency) and it
also satisfies the important property of preserving supports,
in both time and frequency.

If we now introduce the (non random) quantity

Wx(t, f) =
∫ +∞
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which is referred to as theWigner-Ville Distribution(WVD),
it can be shown [7] that, under mild conditions, the WVS of
a process is nothing but the ensemble average of the WVDs
of all possible realizations of this process:

Wx(t, f) = E {Wx(t, f)} . (1)

Given one observed realization of a nonstationary pro-
cess, estimating the WVS amounts to find a substitute for
the unattainable ensemble average entering eq.(1). One stan-
dard way is to assume forx(t) a form of local stationarity in
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both time and frequency, i.e., some locally slow evolution of
the actual WVS in the two directions. Such an assumption
paves the road for a replacement of the ensemble average at
a given time-frequency location by a local smoothing over
a neighbouring domain. This idea can be formalized by in-
troducing as a family of WVS estimators the quantity [7]:

Ŵx(t, f) =
∫ ∫ +∞

−∞
Wx(s, ξ) Π(s− t, ξ − f) ds dξ, (2)

whereΠ(t, f) is some time-frequency smoothing kernel.
This expression, which turns out to coincide withCo-

hen’s class[7] (thereafter denotedCx(t, f ; Π)) for the ob-
served realization, offers a unified setting in which the two
trade-offs mentioned previously (regarding fluctuations and
localization) appear clearly. If we consider the toy example
of a linear chirp embedded in broadband noise, the fluctu-
ations of the WVD due to noise will be smoothed out pro-
vided that the kernel in eq.(2) is low-pass. However, the
WVD of the linear chirp (which has the unique property of
being perfectly localized along the instantaneous frequency
[7]) will be smoothed out too. A way out is however possi-
ble by reconsidering the apparently contradictory issues of
fluctuations reduction and localization at the light of the two
refinements offered by reassignment and multitapers.

2.1. Reassignment

Since the smoothing kernel in eq.(2) isa priori arbitrary, a
possible choice is to make use of a function that would be
itself the WVD of some signalh(t) supposed to be reason-
ably well localized in both time and frequency, a property
that carries over to the time-frequency plane thanks to the
structure of the WVD. Doing so, it is easy to show that we
end up withCx(t, f ;Wh) = S

(h)
x (t, f), whereS

(h)
x (t, f)

is nothing but thespectrogramof x(t) with windowh(t), a
time-frequency distribution that is usually rather expressed
as:

S(h)
x (t, f) =

∣∣∣F (h)
x (t, f)

∣∣∣2 , (3)

where

F (h)
x (t, f) =

∫ +∞

−∞
x(s) h∗(s− t) e−i2πfs ds

stands for theShort-Time Fourier Transform(STFT).
A spectrogram appears therefore as an estimator for the

WVS, with the well-known time-frequency localization trade-
off attached to this type of distribution: the shorter the win-
dow h(t), the better the time localization, but the poorer
the frequency localization, andvice versa. In this respect
however, the alternative interpretation of the spectrogram
as a smoothed WVD (according to eq.(2)) rather than as a
squared STFT (according to eq.(3)) gives the clue for im-
proving upon its localization limitations. Indeed, if we re-
call that the WVD of a linear chirp perfectly localizes on
a time-frequency line, the spreading of any corresponding
spectrogram just comes from the fact that, when centering
the analysis window at some time-frequency point that does

not belong to this line, a non-zero contribution is never-
theless obtained as long as the line passes through the lo-
cal time-frequency window (whose joint support cannot be
made arbitrarily small). Reasoning by a mechanical anal-
ogy identifying energy with mass, the situation is as if a
whole distribution of mass within a domain (here, the time-
frequency window) would be replaced by one single num-
ber (the total mass) assigned to thegeometricalcenter of the
domain. Such an assignment is clearly not well adapted to
situations where the distribution is not uniform over the do-
main. In such cases, a much more meaningful assignment
is thecenter of masswithin the domain. This is precisely
the essence of the reassignment technique, which consists
in evaluating for each time-frequency location, not only the
integrated signal WVD within the domain defined by the
window WVD (in other words, the spectrogram value at
this point), but also the center of mass of the signal WVD,
a location that is possibly different from the window WVD
center and to which the spectrogram value is reassigned. In
the idealized case where one single linear chirp is “seen”
through the time-frequency window, it is clear that the cen-
ter of mass necessarily belongs to the line along which the
WVD is localized, thus guaranteeing a perfect localization
of the spectrogram after its reassignment.

Previous studies [1, 8] have shown that an efficient eval-
uation of the local centers of mass(t̂t,f , f̂t,f ) can be made
implicitly, according to{

t̂t,f = t + Re{F (T h)
x (t, f)/F

(h)
x (t, f)};

f̂t,f = f − Im{F (Dh)
x (t, f)/F

(h)
x (t, f)},

where the two additional windows needed in the computa-
tion are defined from the mother windowh(t) as(T h)(t) =
t h(t) and (Dh)(t) = (dh/dt)(t). Given the field of all
above centröıds, the reassigned spectrogramRS

(h)
x (t, f) at-

tached to the conventional spectrogramS
(h)
x (t, f) follows

as:

RS(h)
x (t, f) =

∫ ∫ +∞

−∞
S(h)

x (s, ξ) δ(t−t̂s,ξ)δ(f−f̂s,ξ)dsdξ.

2.2. Multitapers

In the case of a stationary process, the spectral characteriza-
tion is fully described by means of the PSDSx(f), which
could be thought of as:

Sx(f) = lim
T→∞

E

 1
T

∣∣∣∣∣
∫ +T/2

−T/2

x(t) e−i2πft dt

∣∣∣∣∣
2
 .

In practice, the above quantity is unattainable when only
one realization of finite duration is given. The Squared
Fourier Transform (SFT) of a finite duration observation is
a crude, non consistent, estimator, whose variance is of the
order of the squared PSD [11]. Since an improvement can
only come from an averaging of (almost) uncorrelated esti-
mations, an ergodic argument suggests to first chop the ob-
servation into (almost) disjoint blocks and then average their
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SFTs. This procedure is usually referred to as the Welch
method of averaged periodograms [11]. Adopting the no-
tation of spectrograms, it turns out that the corresponding
(Welch) estimator can be written as:

Ŝ(W )
x,K (f) =

1
K

K∑
k=1

S(h)
x (tk, f),

where the spacing∆ = tk+1 − tk between adjacenttk ’s
is of the order of the window length. Assuming that this
spacing will ensure an approximate decorrelation between
blocks, one can expect that the variance will be inversely
proportional to the numberK of blocks (i.e., roughlyT/∆
for an observation of durationT ). Whereas variance can
be decreased this way by increasingK (to some extent),
the finite duration constraint necessarily leads to shorten∆,
increasing in turn the bias in frequency since a window of
duration∆ has a frequency resolution of the order of1/∆.

In order to circumvent this trade-off, D.J. Thomson sug-
gested [12] to still average SFTs stemming from (almost)
uncorrelated sequences in order to reduce variance, but to
construct such sequences by using for each of them the whole
data set so as to not sacrify bias. The way to achieve this
program consists in projecting the observation on a family
of basis functions{hk(t), k ∈ Z} that are orthonormal over
the observation interval. This results in a (Thomson) esti-
mator that can be written as:

Ŝ(T )
x,K(f) =

1
K

K∑
k=1

S(hk)
x (0, f). (4)

Assuming that the spectrum can be considered as flat
over a given bandwidthB associated with the expected fre-
quency resolution, the basis can be obtained as the family
of orthonormal functions (on the given time interval) that
maximize their energy in the given frequency band. The so-
lution to this problem is given by the family of functions
known as theProlate Spheroidal Wave Functionsor, in a
discrete-time setting, as theDiscrete Prolate Spheroidal Se-
quences(DPSS) [11].

Extending the approach to nonstationary situations is
appealing [9, 13]. The main reason is that the inconsis-
tency (and large variance) of a PSD estimator based on a
crude SFT directly carries over to spectrograms considered
as WVS estimators. The traditional way out would be to
smooth over time and frequency, but at the expense of fur-
ther increasing bias. In this respect, resorting to multitapers
allows for a variance reduction with a bias that only sticks
to the common length of the different windows. This is
certainly an improvement as compared to spectrograms and
smoothed spectrograms with respect to statistical efficiency,
but the question of time-frequency resolution still remains
not improved. Wedding multitapering with reassignment is
therefore proposed as the key for such an improvement.

3. MULTITAPER TIME-FREQUENCY
REASSIGNMENT

3.1. Principle and implementation

The direct application of multitapering to nonstationary pro-
cesses consists in making the estimator (4) time-dependent
according to [9, 13]:

Ŝ(T )
x,K(f) → Sx,K(t, f) =

1
K

K∑
k=1

S(hk)
x (t, f).

What we propose here is to adopt the same strategy, but ap-
plied to reassigned spectrograms, i.e., to consider as a WVS
estimator the quantity:

RSx,K(t, f) =
1
K

K∑
k=1

RS(hk)
x (t, f). (5)

The rationale for this approach can be justified in a twofold
way: (i) as far as chirp components are concerned, reas-
signment increases localization in a way that can be made
independent of the window, thus permitting (5) to act as a
coherentaveraging; (ii ) in noise regions on the contrary, the
same windows lead to uncorrelated surrogate data whose
time-frequency distributions are different, (5) acting in this
case as a form ofincoherentaveraging tending to smooth
the estimate.

In stationary spectrum estimation, multitapers are cho-
sen as DPSSs because the data is of finite duration and esti-
mation concerns frequency only. In the nonstationary case,
there is noa priori reason to dissymmetrize time and fre-
quency by choosing tapers that would be perfectly local-
ized in the time domain rather than in frequency. Indeed,
it makes much more sense to fully exploit the two degrees
of freedom offered by the time-frequency plane and, as sug-
gested in [3, 4], to rather pick up those functions that max-
imally concentrate in time-frequency domains with elliptic
symmetry. As shown in [6], those functions are theHermite
functions (HF), whose definition is given by

hk(t) = (−1)k 1√
π1/22kk!

g(t) (Dkγ)(t),

with g(t) := exp{−t2/2} andγ(t) := g(it
√

2) = exp{t2}.
From a practical point of view, HFs can be computed recur-
sively, according tohk(t) = Hk(t) g(t)/

√
π1/22kk!, where

the{Hk(t), k ∈ N} stand for the Hermite polynomials that
obey the recursion:

Hk(t) = 2 t Hk−1(t)− 2 (k − 2) Hk−2(t), k ≥ 2,

with the initializationH0(t) = 1 andH1(t) = 2 t.
Not only the HFs are orthonormal, but they also guar-

antee a perfect localization of the corresponding reassigned
spectrograms in the case of a linear chirp, for anyk. This
can be easily understood by noting that the WVD of a HF
(which is basically a 2D Laguerre function) has elliptic sym-
metry [4, 6]. Recalling that the WVD is covariant with re-
spect to dilations and rotations, it is enough to check that
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reassignment ends up with a perfect localization in the case
of a pure tone, what can be done by an elementary calcula-
tion.

In the context of reassignment, HFs offer one further ad-
vantage, as compared to DPSSs. In the standard implemen-
tation of spectrogram reassignment, only the mother win-
dow h(t) has to be given and the two additional windows
(T h)(t) and(Dh)(t) that are needed are evaluated numer-
ically [2, 8]. This may cause difficulties, especially when
differentiating tapers whose orderk is large, since they are
highly oscillating. This problem can be easily avoided when
using HFs since their successive derivatives obey a recur-
sion that can be explicitly plugged in the algorithm, namely

(Dhk)(t) = (T hk)(t)−
√

2(k + 1) hk+1(t).

3.2. Examples and performance evaluation

Since the objective of multitaper time-frequency reassign-
ment is to decrease fluctuations while preserving localiza-
tion, our first example is concerned with the idealized situ-
ation of a bandpass filtered Gaussian white noise within a
time-limited support. Although not strictly attainable (be-
cause of the uncertainty relation), the modelM(t, f) for
the WVS of such an observation is the indicator function
of a rectangle within the time-frequency plane. Figure 1
illustrates what happens in such a case by comparing the
WVD and a sample (reassigned) spectrogram with the cor-
responding multitaper estimates based onK = 10 Her-
mite functions. The two effects of reduced fluctuations and
support preservation are clearly visible, and ensemble aver-
ages (based on10 independent estimates) are also provided
for supporting the effectiveness of the approach and its im-
proved convergence rate as compared to an empirical esti-
mate of the WVS.

Figure 1 gives a qualitative account of the behaviour of
the method, that can be supplemented by the more quantita-
tive performance measure

E(K) =
1

‖M‖1

∫ ∫ +∞

−∞

∣∣∣Ŵx(t, f)−M(t, f)
∣∣∣ dt df,

(6)
whereŴx(t, f) stands for the WVS estimate (Sx,K(t, f) or
RSx,K(t, f)), theL1-norm being here chosen so as to put
emphasis on localization in the estimates. Figure 2 presents
results with different domains, all rectangular and centered
in the analyzed time-frequency region, but with different ar-
easD. In the pure white noise case where the model support
identifies with the whole plane (in this case,D = 256), we
observe for both spectrograms and reassigned spectrograms
that the error measure behaves asymptotically asE(K) ∝
K−1/2 when usingK tapers. In the spectrogram case, this
can be justified by the fact that, for each taper, the values
are known to have aχ2 distribution with2 degrees of free-
dom [11]. It then follows from the orthogonality of the ta-
pers that the sum of theK first (Hermite) spectrograms is
alsoχ2 distributed, but with2K degrees of freedom. Such
a distribution can be shown to have for absolute deviation
4KK exp(−K)/Γ(K), a quantity which varies asK1/2 for
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Fig. 1. Comparison of noise WVS estimates —Each diagram
represents a WVS estimate in the case of a white noise process
limited in time and frequency within the superimposed rectan-
gular domain (ideally, the estimate should be constant over this
rectangle and zero outside). The first row consists of a spec-
trogram, its reassigned version and the WVD, based on one re-
alization. The corresponding multitaper estimates (10 Hermite
functions) are given in the middle row, whereas the bottom row
displays ensemble averages of such estimates (10 independent
realizations), together with the empirical WVS estimate on the
same data set. In each diagram, time is horizontal, frequency
vertical, and the energy is coded with gray levels on a logarith-
mic scale with a dynamic range of30 dB.

largeK ’s (from Stirling’s formula), leading to theK−1/2

behavior for the meanSx,K(t, f). Although no proof is
available yet, the experiments reported in Figure 2 evidence
a similar behaviour for multitaper reassigned spectrograms
RSx,K(t, f), but with a higher level of fluctuations. How-
ever, when the area of the domainD is reduced, the situa-
tion evolves quite differently for the two estimates: on the
one hand,Sx,K is smoother thatRSx,K ; on the other hand,
RSx,K is essentially confined to the non-zero support of
the model, whereasSx,K spreads outside this domain. The
criterion (6) is a measure of this bias-fluctuations trade-off
that is illustrated in Figure 2 for smaller and smaller do-
mains, evidencing eventually crossings indicating that con-
ventional multitaper spectrograms may be outperformed by
their reassigned counterparts when localized components
are to be analyzed.

In this respect, we consider in Figure 3 the case already
discussed in [4] and [5], with both a (nonlinear) chirp com-
ponent and a (bandpass) time-varying noise. The effec-
tiveness of the approach is clearly supported by this exam-
ple which evidences the good trade-off achieved between
time-frequency localization along the chirp and smoothness
within the (time-varying) frequency band of the noise.

4. CONCLUSION AND PERSPECTIVES

A novel approach, combining reassignment and multitaper-
ing, has been proposed for better estimating time-varying
spectra with possibly localized components. Due to space
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Fig. 2. Error measures in WVS multitaper estimates —The
figure plots, as a function of the numberK of tapers, the error
measure (6) attached to multitaper (reassigned) spectrograms
when the model is a Gaussian white noise process limited in
time and frequency over a rectangular domain of areaD. The
simulations have been conducted (with up toK = 30 Hermite
tapers, each of lengthNh = 127) on the basis ofR = 10
independent realizations ofN = 512 data points each, with
Nfft = 256 frequency bins over the whole frequency range
[0, 1/2). In the pure white noise situation (which corresponds
in the present case to the areaD = 256), asymptotic decays in
K−1/2 (see text) have been superimposed as dotted lines.

sample spectro. sample reass. spectro.

sample Wigner mean reass. spectro.

Fig. 3. Comparison of signal+noise WVS estimates —Each
diagram represents a WVS estimate in the case of a nonlinear
chirp signal embedded in a bandpass time-varying noise limited
within the superimposed frequency band (ideally, the estimate
should be constant over this band, zero outside and perfectly
localized along the chirp instantaneous frequency). The first
row consists of a spectrogram and its reassigned version, based
on one realization. The corresponding multitaper estimate (6
Hermite functions) is given in the bottom row (right), with the
WVD (left) for comparison. In each diagram, time is horizontal,
frequency vertical, and the energy is coded with gray levels on
a logarithmic scale with a dynamic range of30 dB.

limitation, only the basic principles of the method have been
outlined, with no reference to many issues and variations
that can be envisioned. For instance, only the simplest way
(arithmetic averaging) of combining estimates with differ-
ent tapers has been considered here, but other types of av-
eraging are possible (see, e.g., [10]) as well as refinements
such as jacknifing the estimates [13], that might improve
upon the performance. Such developments are under cur-
rent investigation and will be reported elsewhere.
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