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ABSTRACT 

A Sensor node localization algorithm for indoor quasi-static 

sensor environments using spatial domain quasi-maximum 

likelihood (QML) estimation is presented. A time of arrival 

(TOA) based algorithm is used to arrive at the “pseudo” 

range estimates from the base stations to the sensor nodes. 

The localization algorithm uses spatial domain quasi-

maximum likelihood estimation to determine the actual sen-

sor location. The algorithm is preceded by a calibration 

phase during which statistical characterization of the line-

of-sight (LOS) and non-line-of-sight (NLOS) returns are 

derived. Using a synthesized bandwidth of 2GHz, a 4-bit 

analog-to-digital converter (ADC) and 5-10dB signal-to-

noise ratio (SNR), localization with high accuracy is 

achieved. 

1. INTRODUCTION 

Wireless sensor networks are becoming increasingly popular 

as a result of recent advances in low-power circuit design, 

availability of simple yet reasonably efficient wireless com-

munication equipment and reduced manufacturing costs [1]. 

These networks typically combine wireless communication 

components, minimal computation capabilities and some 

sensing of the physical environment into a network. All 

these components together in a single device form a sensor 

node.  

Sensor networks are used in a number of surveillance 

type tasks, such as asset tracking, finding people in emer-

gency situations etc. Sensor nodes also measure some physi-

cal quantity(s) at a given position. Thus having knowledge of 

the sensor locations is very essential to these applications. 

This feature is also emphasized in the IEEE 802.15.3a and 

IEEE 802.15.4a wireless personal area networks. 

Traditional localization techniques use one or more of 

the following measures: received signal strength indicator 

(RSSI) [2][13], time of arrival (TOA) [3][4], time difference 

of arrival (TDOA) [5], or angle of arrival (AOA) [6]. Some 

approaches have explored the use of RSSI fingerprinting 

technique for localization [13], but this requires extensive 

offline calibration which is not practical in most applications. 

We concentrate on the time-based approaches which are most 

suitable for applications that need high ranging accuracy. 

The presence of multipath components in the received 

signal due to non-line-of-sight (NLOS) propagation makes 

the problem of ranging especially challenging. Most of the 

work in the literature is based on assumptions that the line-

of-sight (LOS) signal is always present, for e.g. [3], [4]. In 

[4] it is assumed that the LOS signal is the earliest arrival and 

the results showed that the estimation error increases rapidly 

with the transmitter to receiver range. These approaches, 

despite using bandwidths in excess of 1GHz, do not achieve 

the high ranging accuracy that some sensor network applica-

tions require. Many approaches have also been proposed in 

the literature that find some distinct properties of the NLOS 

range measurements to distinguish them from LOS meas-

urements, for e.g. [7] and [8]. Using pure statistical charac-

teristics to distinguish NLOS measurements from LOS 

measurements is a difficult problem. 

Most proposed approaches dealing with the NLOS chal-

lenge can be decomposed into two steps. In the first step, the 

TOA (or TDOA) measurements associated with the visible 

base stations (BS) are obtained. In the second step, a location 

algorithm is implemented, fusing the measurements obtained 

in the first step into a position estimate. It is seen that the 

geometric relationship between the TOAs is logically ex-

ploited in the second step to obtain the position estimate but 

is not used to assist in the TOA estimation of the first step 

[9].  

We present here, a novel approach that fuses the range 

(or TOA) estimation and localization phases in such a way 

that the geometric relationship of the TOAs also aids in the 

range estimation. This lowers the probability of reporting 

NLOS range estimates. This additional information is avail-

able while estimating the range and improves the localization 

accuracy dramatically compared to the traditional ap-

proaches. At the same time our algorithm is computationally 

efficient.  

In our approach, the signal (LOS/NLOS) and noise 

peaks are characterized during an initial calibration phase. 

The ranging algorithm gives multiple pseudo range esti-

mates. One of these estimates will be due to the LOS compo-

nent while others will be due to NLOS components or noise. 

The range estimates from all visible BSs are combined in a 

spatial-domain quasi-maximum likelihood (QML) estimation 

technique to arrive at the final location estimate. This method 

will be shown to give more accurate position estimates than 

previously reported approaches. 

It will also be shown that the calibration phase is suffi-

cient to gather all the necessary channel information and no 

other prior information about the channel is needed. Suitable 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



modifications to this algorithm enable it to be used in low 

bandwidth (BW) and multi-band systems. 

The rest of the paper is organized as follows. Section 2 

presents the sensor localization setting which we call, the 

localization model. Section 3 describes the calibration phase 

for statistical modeling. Section 4 describes the ML location 

estimation algorithm. Section 5 presents simulation and pre-

liminary experimental results. Section 6 gives some conclud-

ing remarks and future research direction. 

2. LOCALIZATION MODEL 

Consider a model in which a number of sensor nodes and 

base stations communicate with each other for localization 

of the nodes. Each node that needs to be localized transmits 

a ranging pulse. All base stations and previously localized 

nodes which receive the transmission, record the received 

pulse. Each of these BSs (or nodes) executes the first phase 

of the localization algorithm to identify the pseudo range 

estimates. The pseudo range estimates are then communi-

cated to a central BS along with the position of the node that 

measured them. At the central BS this information is fused 

with similar information from other BSs or nodes to produce 

an estimate of the sensor location. The BSs and nodes need 

to be time-synchronized using techniques such as [14]. We 

also briefly discuss some of the issues related with time-

synchronization in our experimental results section.  

This model uses an asymmetric setup where most of the 

computation is done at a central BS while minimal process-

ing is done at the sensor nodes. This is a very desirable fea-

ture for sensor networks since sensor nodes are very re-

source constrained and hence should be required to do only 

a minimal amount of computation. 

2.1 Ranging Pulse Characteristics 

We assume that the sensor nodes and BSs transmit a short 

duration Gaussian monopulse with a bandwidth of 528 MHz. 

In multi-band communication systems, the whole bandwidth 

is divided into several sub-bands. In each time interval, a 

signal is transmitted in one of the sub-bands. At the receiver, 

signals from 4 sub-bands are combined to give a virtual large 

bandwidth (≈ 2GHz) signal using the technique in [10]. Sig-

nal in each of the sub-bands is sampled at 1GHz and then 

upsampled by a factor of 4 to give an effective sampling rate 

of 4GHz. Higher sampling rates are achieved via processing 

in the digital domain. The transmit signal after going through 

the channel is input to a matched filter receiver. The matched 

filter output is subject to thresholding to detect local peaks. 

The threshold is chosen based on the desired error perform-

ance and the estimated signal-to-noise ratio (SNR). Figure 1 

shows the matched filter output plotted as signal amplitude 

(y-axis) versus the sample number (x-axis), in the presence 

of Gaussian noise.  

The waveform shown in Figure 1 has significant multi-

path components and the signal peak does not occur at the 

leading edge of the waveform. We record the received signal 

peaks at each BS and use these to estimate the pseudo (or 

candidate) range estimates. We call these pseudo range esti-

mates since only one of them is due to the LOS component; 

all others are due to NLOS components or noise.  

 

 

Figure 1- Matched filter output in the presence of Gaussian noise 

 

The goal of the ranging technique would be to pick only 

the LOS estimates to be used in the next phase for location 

estimation. The calibration phase, explained next, aids in 

characterizing the signal components (LOS and NLOS) and 

noise, which will be used in the ML estimation algorithm. 

3. CALIBRATION AND STATISTICAL 

MODELING 

In the calibration phase, two sets of training runs are carried 

out. The first set is carried by averaging several measure-

ments over a short time interval, to achieve a virtual high 

SNR environment. Alternatively, we can use a reliable chan-

nel model, such as the IEEE 802.15.3a. In a high SNR envi-

ronment the local peaks detected will either be due to the 

LOS or the NLOS components. The measured peak strengths 

are normalized by the strength of the global peak in the out-

put of the matched filter. Global peak is defined as the largest 

peak detected in a single received ranging pulse. Histograms 

are estimated for the strengths of the LOS and NLOS peaks 

using these measurements. 

In this paper, we rely on the IEEE 802.15.3a channel 

model 3 (CM3). The second set of training runs are carried 

out in the presence of Gaussian noise but in the absence of a 

transmit signal, i.e., under noise-only conditions. The proce-

dure outlined above is followed to estimate a histogram for 

the relative strength of the noise peaks. The histograms for 

the relative strengths are obtained using a channel model or 

results from the first set of training runs. Here we used the 

IEEE 802.15.3a channel model 3 (CM3) [11].  

The relative strength of the signal peaks follows an ex-

ponential distribution, whereas that of the noise peaks fol-

lows a lognormal distribution. By normalizing these histo-

grams to unit area we obtain probability distributions for the 

relative strengths of the signal and noise peaks, which we 

denote by fsignal(ρ) and fnoise(ρ), respectively. 
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The histograms for the time difference between the loca-

tion of the local peaks and the global peak in the matched 

filter output are also estimated. (The histograms are not 

shown here as they simply corroborate the channel model 

used in our simulations). This characterization of the signal 

and noise peaks is used in the location estimation algorithm 

described next. 

4. LOCATION ESTIMATION ALGORITHM 

4.1 Identifying Pseudo Range Estimates 

The ranging pulse transmitted by a sensor node is received 

by all BSs within its radio range. At each BS, a threshold is 

chosen to detect peaks in the received signal. The detected 

peaks are recorded in terms of their signal strength (ρi, nor-

malized with respect to the global peak in the received sig-

nal) and the time difference (δi) between the detected peak 

and the global peak. The time difference is used to estimate 

the pseudo range (ri) due to each of the detected peaks (as if 

each of the peaks were due to the LOS component). Let tpeak 

denote the time stamp of the global peak, then:  

                                 )..( ipeaki tcr δ−=                                 (2) 

Each pseudo range estimate gives a circle centered on 

the corresponding BS with radius ri, on which the sensor 

node could lie. 

 

                                                            
 

 

 

 

 

                                             

Figure 2 - Pseudo range estimates from 4 BSs to a sensor; the sensor 
node is located at the intersection of the LOS ranges 

4.2 Spatial Domain Location Estimation Algorithm 

The localization procedure is described below: 

Step 1. At each BS, detect peaks in the received signal by 

setting a threshold; record (ρi, δi) pair for each peak. 

Step 2. Estimate ri for each peak detected in step 1. 

Step 3. Each BS transmits the recorded information along 

with its location information to a central processing 

location. 

Step 4. After information from all the BSs has been received 

at the central location, the area of interest, where the 

sensor node could possibly exist, is divided into a grid 

of cells. (Note: Area of interest is determined based 

on the known locations of the BSs and the largest 

pseudo range estimate from each BS. This is possible 

since pseudo range gives how far the sensor could be 

located from the BS). The cell size is determined by 

the smallest resolvable time interval during the 

pseudo range identification phase. 

Step 5. Represent the grid of cells as a matrix. The matrix is 

populated such that the entry in each cell represents 

the likelihood of the cell containing a LOS range es-

timate. This computation is explained next. 

4.2.1 Likelihood Matrix Computation 

Let yi(t) = x(t) + ni(t), be the received signal at the i
th
 BS, 

where x(t) represents the transmitted signal and ni(t) the 

Gaussian noise. We assume that noise is independent for each 

BS and for each received pulse. 

Let ρi be the strength of the peak, mapped to a cell, due 

to the signal received at the i
th
 BS. Then, at any BS the likeli-

hood of the peak being due to signal or noise is given by 

f(signal/ρ) or f(noise/ρ), respectively. 
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To compute the location of the sensor, we need to com-

bine the measurements from all BSs. There are two possibili-

ties to consider. These correspond to two models for the path 

loss from the sensor node to each of the BSs, and the likeli-

hood of any peak being due to signal or noise: (i) We may 

consider the path losses to be correlated since they are domi-

nated by a deterministic loss that is a function of the BSs and 

sensor geometry. In this case, extensive calibration would be 

needed to model each of the individual path losses which is 

not practical. (ii) We may alternatively consider the path 

losses to be random and independent due to the arbitrary 

placement and dynamic structure of the obstructions between 

the sensor and each of the BSs. In this case, we can assume 

that the path losses are independent realizations drawn from 

the same distribution. We use the latter model as a reasonable 

approximation in the presence of multipath propagation.  

At each cell, peaks from a number of BSs each with 

strengths ρi (i = 1,…, M), are reported. If each of these is an 

independent observation, the overall likelihood function 

would be a product of the individual likelihoods. Otherwise, 

the product of the individual likelihoods is not the overall 

likelihood. Nevertheless it provides a reasonable cost func-

tion that we will maximize below. We refer to this cost func-

tion as a quasi-likelihood function.  

BS1 

BS4 

BS2 

BS3 
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Let Ameasured,i represent the matrix of likelihood values 

for the ith BS. Since each pseudo range estimate comes from 

a peak in the received signal, the likelihood of it being due to 

the LOS signal component is related, directly to the likeli-

hood of the peak coming from the signal (LOS/NLOS) dis-

tribution, and inversely to the likelihood of the peak being 

from the noise distribution. 

For each detected peak with relative strength, say ρl, the 

likelihood of it being due to noise, fnoise(ρl), is obtained from 

the noise distribution. Locate ρl on the x-axis of the noise 

distribution and the corresponding value on the y-axis gives 

fnoise(ρl). This computation is shown in Figure 3. The likeli-

hood fsignal(ρl) is calculated in a similar manner using the sig-

nal distribution. We denote fsignal(ρl) and fnoise(ρl) being as-

signed to cell (j, k) by fsignal( j, k) and fnoise( j, k), respectively.  

 

Figure 3 - Illustration of likelihood function evaluation 

Using (3) we obtain: 
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In (4), i is the BS index and (j, k) are used to index the 

matrix or cell entries. Each of the matrices Ameasured,i  indi-

cates where the sensor is most likely to be present. Thus by 

overlaying each of these matrices, one over the other, on the 

cell grid would give the overall likelihood distribution.   

                         ∏=
i
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The cell with the maximum valued entry when mapped to the 

area of interest gives the location estimate (xs, ys) of the sen-

sor node. 
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4.2.2 Intuitive Explanation 

Each range estimates ri can be represented by a circle around 

the BS on a map of the sensor network. The intersection of 

the circles from all the visible BSs would give a grid of pos-

sible locations for the target or the source. The position with 

the maximum likelihood (or quasi-likelihood) value would 

be chosen as the sensor node location estimate. 

5. RESULTS 

5.1 Simulation Results 

Extensive simulations were carried out using 250 different 

channel realizations based on the IEEE 802.15.3a channel 

model. Noise is assumed to be independent for each signal 

return. A 4-bit analog-to-digital converter (ADC) is used in 

the receiver circuitry and the SNR reported includes the 

quantization noise effects due to the ADC. 

We estimate the sensor position using range estimates 

from 5 BSs. The BS coordinates are generated randomly 

using a uniform distribution on a square grid and the SNR is 

fixed at 10dB. The simulation results from 50 trial runs are 

shown in Figure 4, where the BS locations are represented by 

different shapes {△,▽, □, ○ etc}.  
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Figure 4 -   Simulation results: Solid lines indicate the error between 

the estimated and true sensor positions.  

The actual sensor location was (0, 0). It can be seen from 

Table 1 that localization accuracy improves with SNR and 

there is no significant degradation in the accuracy even when 

the SNR is reduced to 5dB. The ranging accuracy achieved 

here is significantly better than the approaches reported in the 

literature. 

TABLE 1. POSITION ESTIMATION ERROR (IN METERS) 

SNR Mean Error RMS Error 

5 dB 1.2080 0.9275 

10 dB 1.1080 0.8860 

20 dB 1.1055 0.7785 

 

The approach in [4] looks for the LOS component in a 

small window of the received signal. Estimating the window 

becomes extremely difficult at long ranges due to the com-

plex LOS blockage, resulting in large estimation errors. Our 

approach avoids this problem as we do not try to locate the 

LOS position in each received signal. Rather we combine the 

pseudo range estimates from a number of BSs and the final 

location estimate is the one with the maximum likelihood of 

having a signal component. This works well because it is 

highly unlikely that a majority of the BSs would report 

NLOS estimates which overlap at any given point (or cell). 

ρl 

fnoise(ρl) 
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5.2 Preliminary Experimental Results 

We are conducting experiments using the MICAz mote 

module (2.4GHz, IEEE 802.15.4 compliant with an overall 

BW of 80MHz). In the absence of a way to tap into the raw 

RF transmit/receive signal at the sensor nodes, we are using 

the start of frame delimiter (SFD) signal to measure the time 

of flight (TOF) between nodes. We characterized the accu-

racy of the TOF measurements taken at a single node. Any 

improvements to the range estimation, as a result of calibrat-

ing the sensor nodes, would increase the localization accu-

racy as well. 
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Figure 5 - Linear fit for the TOF measurements taken at a single 

node  

The plot in Figure 5 shows the results of the TOF measure-

ment between two nodes at distances between 0-6m with 

0.5m increments. The linear fit shows a baseline measure-

ment offset of 3.27µs. The offset could be due to a combina-

tion of packet processing delay, random back-off time due to 

the CSMA-CA protocol, clock offset between nodes and 

granularity due to the low accuracy clock. This error can be 

compensated for using a linear calibration based on these 

measurements. We characterize each sensor node in this 

manner and the averaged calibration coefficients are applied 

to every node. This would further reduce the range estima-

tion error. 

6. CONCLUSION AND FUTURE WORK 

A sensor localization algorithm, based on spatial domain 

quasi-maximum likelihood estimation, for multipath propa-

gation conditions has been presented. This algorithm fuses 

the range estimation and localization phases such that the 

geometric relationship of the TOAs aids the range estima-

tion phase as well. The algorithm is well suited for asym-

metric implementation where most of the computation is 

done at a central BS. Simulation results have shown that this 

approach gives enhanced ranging accuracy. The accuracy 

achievable is limited only by the cell size chosen and the 

SNR. The cell size is related to the time resolution achiev-

able with the ranging signal being used, which in turn de-

pends on its bandwidth. Also, by not trying to directly esti-

mate the position of the LOS component in each of the re-

ceived signals, we overcome the difficult problem of NLOS 

identification. The measurement campaign with the MICAz 

motes is aimed at refining our location estimation algorithm 

for low bandwidth and multi-band systems. 
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