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ABSTRACT 
This Paper studies several classifiers based on Multi-layer 
Perceptrons (MLP) for face verification. We use the 
Discrete Cosine Transform (DCT) instead of the 
eigenfaces method for feature extraction. Experimental 
results using a Nearest Neighbour classifier show a 
minimum Detection Cost Function (DCF) of 1.76% when 
using DCT, and 7.14% when using eigenfaces. We also 
study several MLP architectures, and we get better 
accuracies when using Bose-Chaudhuri-Hocquenghem 
(BCH) codes. In this case, we reduce the minimum DCF 
to 0.97% when using DCT feature extraction. 
 

1. INTRODUCTION 
Face recognition is probably the most natural way to 
perform a biometric authentication between human 
beings. However, the technology still presents some 
drawbacks, which have been described in the literature, 
such as Vulnerability [1], Privacy [2], and others [3]. 
In this paper we use a DCT approach in combination with 
a neural net classifier and data fusion [4]. Experimental 
results have been evaluated using the DET plots [5] and 
reveal a significant improvement over previous techniques 
[6]. 
 
1.1 The eigenface approach 
Turk and Pentland [7], proposed an eigenface system 
which projects face images onto a feature space that spans 
the significant variations among known face images using 
the Karhunen-Loéve Transform. It is an orthogonal lineal 
transform of the signal that concentrates the maximum 
information of the signal with the minimum number of 
parameters using the minimum square error (MSE). The 
significant features are known as eigenfaces, because they 
are the eigenvectors (principal components) of the set of 
images. The projection operation characterizes an 
individual face by a weighted sum of the eigenface 
features, and so to recognize a particular face it is only 
necessary to compare these weights to those of known 
individuals. 
Recognition is performed by finding the training face that 
minimizes the face distance with respect to the input test 

face. In other terms, the identification of the test image is 
done locating the database entry, whose weights are 
closest (in Euclidean distance) to the weights of the face. 
1.2 The DCT approach 
The Discrete Cosine Transform (DCT) is closely related 
to the Discrete Fourier Transform (DFT). It is a separable, 
linear transformation; that is, the two-dimensional 
transform is equivalent to a one-dimensional DCT 
performed along a single dimension followed by a one-
dimensional DCT in the other one. 
The application of the DCT to an image (real data), 
produces a real result. The DCT tends to concentrate 
information, making it useful for image compression 
applications, dimensionality reduction, etc. 
An important advantage of the DCT is that basis functions 
are not data dependent (it will generalize better than 
KLT). 
 

2. EXPERIMENTAL RESULTS 
This section evaluates the results obtained using the dct 
and compares them with the classical eigenface method. 
On the other hand, several classifiers are applied. 
 
2.1 Database 
The database used is the ORL (Olivetti Research 
Laboratory) faces database [8]. This database contains a 
set of face images taken between April 1992 and April 
1994 at ORL. The database was used in the context of a 
face recognition project carried out in collaboration with 
the Speech, Vision and Robotics Group of the Cambridge 
University Engineering Department. 
There are ten different images of each of 40 distinct 
subjects. For some subjects, the images were taken at 
different times, varying the lighting, facial expressions 
(open/closed eyes, smiling / not smiling) and facial details 
(glasses / no glasses). All the images were taken against a 
dark homogeneous background with the subjects in an 
upright, frontal position (with tolerance for some side 
movement). 
In [9] the minimum size of the test data set, n, which 
guarantees statistical significance in a pattern recognition 
task, is derived. The goal in the abovementioned work is 
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to estimate n so that it is guaranteed, with a risk α of being 
wrong, that the error rate p does not exceed that estimated 
from the test set, P̂ , by an amount larger than ( ),Nε α , that 

is, ( ){ }ˆPr ,P P Nε α α> + < . Letting ( ),N Pε α β=  and 

supposing recognition errors as bernoulli trials (i.i.d. Errors), 
we can derive the following relation after some 

approximations: 2

lnN
P
α

β
−

≈ . For typical values of α and β (α 

=0.05 and β =0.2), the following simplified criterion is 

obtained: 100N
P

≈  

If the samples in the test data set are not independent (due to 
correlation factors that may include variations in recording 
conditions, in the type of sensors, etc.), then n must be 
further increased. The reader is referred to [8] for a detailed 
analysis of this case, where some guidelines for computing 
the correlation factors are also given. In [6] we compared 
several algorithms results using ORL and FERET databases 
and we found that ORL is statistically significant for 
verification applications studies. On the other hand, the 
reduced set of people lets to perform fast simulations when 
compared against FERET. 
 
2.2 Conditions of the experiments 
Our results have been obtained with the ORL database [8] in 
the following situation: 40 persons, faces 1 to 5 for training, 
and faces 6 to 10 for testing. 
We obtain one model from each training image. During 
testing each input image is compared against all the models 
inside the database (40x5=200 in our case) and the closest 
model to the input image (using Mean Square Error 
criterion) indicates the recognized person. 
Biometric recognition systems can be operated in two ways: 
a) Identification: In this approach no identity is claimed 

from the person. The automatic system must determine 
who is trying to access. 

b) Verification: In this approach the goal of the system is to 
determine whether the person is who he/she claims to 
be. This implies that the user must provide an identity 
and the system just accepts or rejects the users according 
to a successful or unsuccessful verification. Sometimes 
this operation mode is named authentication or 
detection. 

For identification, if we have a population of N different 
people, and a labelled test set, we just need to count the 
number of identities correctly assigned. 
Verification systems can be evaluated using the False 
Acceptance Rate (FAR, those situations where an impostor is 
accepted) and the False Rejection Rate (FRR, those 
situations where a user is incorrectly rejected), also known in 
detection theory as False Alarm and Miss, respectively. 
There is trade-off between both errors, which has to be 

usually established by adjusting a decision threshold. The 
performance can be plotted in a ROC (Receiver Operator 
Characteristic) or in a DET (Detection error trade-off) plot 
[5]. 
We have used the minimum value of the Detection Cost 
Function (DCF) for comparison purposes. This parameter is 
defined as [5]: 

  miss miss true fa fa falseDCF C P P C P P= × × + × ×  (1) 

Where cmiss is the cost of a miss (rejection), cfa is the cost of a 
false alarm (acceptance), ptrue is the a priori probability of the 
target, and pfalse = 1 − ptrue. We have used cmiss= cfa =1. 

In our experiments, we are making for each user, all other 
users’ samples as impostor test samples, so we finally have, 
that n=40×5 (client)+40×39×5 (impostors)=8000. So, with 
95% confidence, our experiments guarantee statistical 
significance in experiments with an empirical error rate, P̂ , 
down to 1.25%, which is certainly suitable for our 
experiments. 
2.3 Dimensionality reduction using the DCT 
The first experiment consisted of the evaluation of the 
identification rates as function of the vector dimension. Thus, 
200 tests (40 persons x 5 test images per person, being each 
image size 92x112 pixels) were performed for each vector 
dimension (92 different vector dimensions) and the 
corresponding identification rates were obtained. 
Experimental results revealed better performance for N’=100 
coefficients. 
The classifier consists of a nearest neighbor (NN) classifier 
using the Mean Square Error (MSE) or the Mean Absolute 
Difference (MAD) defined as: 

( ) ( )
( )2

2

1

,
N

i i
i

MSE x y x y
′

=

= −∑r r  
(2) 

( )
( )2

1

,
N

i i
i

MAD x y x y
′

=

= −∑r r  
(3) 

Where N’ is the dimensionality of the vectors that represent 
faces. 

Table 1. Comparison between different systems 

FEATURE 
EXTRACTION 

VECTOR 
DIMENS. 

CLASSIFIER DCF 
(%) 

EIGENFACES 200 NN (MAD) 7.14 
EIGENFACES 100 NN (MAD) 7.67 
DCT 100 NN (MAD) 6.28 
DCT 100 NN (MSE) 5.84 
DCT 100 MLP 1.76 
DCT 100 RBF 1.62 
DCT+EIGENFA 100 RBF+NN (MAD) 1.35 
DCT 100 RBF+NN (MAD) 1.5 
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In addition, we have also tested two different neural network 
architectures, acting as classifiers: Multi-Layer Perceptron 
(MLP) and Radial Basis Function (RBF) [9-11]. 
Table 1 compares the results obtained with different feature 
extraction, classifiers, and some combinations. We provide 
results for verification (minimum value of the Detection Cost 
Function).Table 1 reveals that the DCT approach 
outperforms face verification using eigenfaces. In addition, 
the neural net classifier outperforms the nearest neighbour 
classifier, probably because it is a discriminative learning. 
 
2.4 Neural net classifier trained in a discriminative 
mode 
In our experiments, a neural net has been trained as 
discriminative classifier in the following fashion: when the 
input data belongs to a genuine person, the output (target of 
the NNET) is fixed to 1. When the input is an impostor 
person, the output is fixed to –1. Figure 1 shows the obtained 
intra/inter-distance histogram result for a face recognition 
system using a Multi-Layer Perceptron (MLP) and ORL 
database with the conditions given in previous section. A 
fitted Gaussian is also plotted in each histogram. 
In this example, the number of genuine training samples is 
40×5, while the number of impostors is 40×40×5–
40×5=39×40×5. It is interesting to observe that There is a 
preponderance of the negative responses. This is because of 
the most part of the training vectors are inhibitory. Thus, the 
MLP tends to learn that "all is inhibitory". Although we 
bounded the MLP to learn +1 or –1, all the values are shifted 
to negative ones (the mean of the genuine values is close to 0 
and far of 1). In general, in patter recognition applications, 
the number of samples for impostors is always higher than 
the number of genuine persons, because each person can be 
considered as impostor for all the other ones.  
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Figure 1 Inter and intra distance histograms for one-per-class 
approach. 

One of the problems that occur during neural network 
training is called overfitting: the error on the training set is 
driven to a very small value, but when new data is presented 
to the network the error is large. The network has memorized 

the training examples, but it has not learned to generalize to 
new situations. The adopted solution to the overfitting 
problem has been the use of regularization. The 
regularization involves modifying the performance function, 
which is normally chosen to be the sum of squares of the 
network errors on the training set. So, this technique helps 
take the mystery out of how to pick the number of neurons in 
a network and consistently leads to good networks that are 
not overtrained. In addition, there is another important topic: 
the random initialization. We have done 100 random 
initializations in each experiment, and we provide the 
minimum error, mean error and standard deviation. 
 
2.5 Error correction codes 
Error-control coding techniques [13] detect and possibly 
correct errors that occur when messages are transmitted in a 
digital communication system. To accomplish this, the 
encoder transmits not only the information symbols, but also 
one or more redundant symbols. The decoder uses the 
redundant symbols to detect and possibly correct whatever 
errors occurred during transmission. 
Block coding is a special case of error-control coding. Block 
coding techniques map a fixed number of message symbols 
to a fixed number of code symbols. A block coder treats each 
block of data independently and is a memoryless device. The 
information to be encoded consists of a sequence of message 
symbols and the code that is produced consists of a sequence 
of codewords. Each block of k message symbols is encoded 
into a codeword that consists of n symbols; in this context, k 
is called the message length, n is called the codeword length, 
and the code is called an [n, k] code. 
A message for an [n, k] BCH (Bose-Chaudhuri-
Hocquenghem) code must be a k-column binary Galois 
array. The code that corresponds to that message is an n-
column binary Galois array. Each row of these Galois arrays 
represents one word. 
BCH codes use special values of n and k: 
� n, the codeword length, is an integer of the form 2m–1 

for some integer m > 2. 
� k, the message length, is a positive integer less than n. 
However, only some positive integers less than n are valid 
choices for k. This code can correct all combinations of t or 
fewer errors, and the minimum distance between codes is 

min 2 1d t≥ + . Table 2 shows some examples of suitable 
values for BCH codes. 
 

n 7 5 31 
k 4 11 7 5 26 21 16 11 6 
t 1 1 2 3 1 2 3 5 7 

Table 2. Examples of values for BCH codes. 
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2.6 Multi-class learning problems via error-
correction output codes. 
Multi-class learning problems involve finding a definition 
for an unknown function ( )f xr  whose range is a discrete set 
containing k > 2 values (i.e. k classes), and xr  is the set of 
measurements that we want to classify. The definition is 
acquired by studying large collections of training examples 
of the form ( ){ },i ix f xr r . 
We must solve the problem of learning a k-ary classification 
function { }: 1, ,nf kℜ → L  from examples of the form 

( ){ },i ix f xr r . The standard neural network approach to this 
problem is to construct a 3-layer feed-forward network with 
k output units, where each output unit designates one of the k 
classes. During training, the output units are clamped to 0.0, 
except for the unit corresponding to the desired class, which 
is clamped at 1.0. During classification, a new xr  value is 
assigned to the class whose output unit has the highest 
activation. This approach is called [14-15] the one-per-class 
approach, since one binary output function is learnt for each 
class. 
An alternative method, proposed in [14-15] and called error-
correcting output coding (ECOC), gives superior 
performance. In this approach, each class i is assigned an m-
bit binary string, ci, called a codeword. The strings are 
chosen (by BCH coding methods) so that the Hamming 
distance between each pair of strings is guaranteed to be at 
least dmin. During training on example xr , the m output units 
of a 3-layer network are clamped to the appropriate binary 
string ( )f xc r . During classification, the new example xr  is 
assigned to the class i whose codeword ci is closest (in 
Hamming distance) to the m-element vector of output 
activations. The advantage of this approach is that it can 

recover from any min 1
2

dt −⎢ ⎥= ⎢ ⎥⎣ ⎦
 errors in learning the 

individual output units. Error-correcting codes act as ideal 
distributed representations. 
In [14-15] some improvements using this strategy were 
obtained when dealing with some classification problems, 
such as vowel, letter, soybean, etc., classification. In this 
paper, we apply this same approach for biometric face 
recognition. 
If we observe the output codes (targets) learnt by the neural 
network when the input pattern x k∈

r  user, we can see that 
just the output number k is activated, and the number of 
outputs is equal to the number of users. 
If we observe the output codes (targets) where each user has 
his own code, and these codes are selected from the BCH [n, 
k] codes, in fact, it yields up to 2k  output codes. However, 
we just need 40, because this is the number of users. It is 
interesting to observe that BCH [n, k] provides a more 
balanced amount of ones and zeros, while in one-per-class 

approach almost all the outputs will be inhibitory. 

3. EXPERIMENTAL RESULTS 
We use a Multi-layer perceptron with 100 inputs, and h 
hidden neurons, both of them with tansig nonlinear transfer 
function. 
This function is symmetrical around the origin. Thus, we 
modify the output codes replacing each “0” by “–1”. In 
addition, we normalize the input vectors xr  for zero mean 
and maximum modulus equal to 1. 
Figure 1 shows the histograms of the neural net outputs for 
genuine scores (top) and impostors (bottom), using one-per-
output approach. A fitted Gaussian is also plotted for each 
distribution. Figure 2 shows the same information when 
using BCH (31, 6) output codes during training (targets). It 
corresponds to MSE (see equation 9) computation between 
expected values (changing “0” per “–1”) and obtained 
outputs. Obviously equations 9 and 10 yield a resulting 
distance, which is always greater or equal to zero. For this 
motivation, and for comparison purposes, we have plotted (1 
– distance). For this reason, the maximum value in previous 
figure is equal to 1. A good error-correcting output code for a 
k-class problem should satisfy two properties [14]: 
� Row separation: each codeword should be well-

separated in Hamming distance from each of the other 
codewords. 

� Column separation: each bit-position function fi should 
be uncorrelated from the functions to be learnt for the 
other bit positions ,jf j i≠ . 

Error- correcting codes only succeed if the errors made in the 
individual bit positions are relatively uncorrelated, so that the 
number of simultaneous errors in many bit positions is small. 
For this purpose, we have used the algorithm proposed in 
[16] for random ECOC generation. On the other hand, 
ECOC approaches can be interpreted as a combination of 
pattern classifiers [16]. 
For 40 outputs (classifiers) and 40 users we get a minimum 
row (class) Hamming distance Hc = 24 bit and minimum 
column (classifier) Hamming distance HL = 24 bit, after 500 
random iterations. On the other hand, BCH (31,6) provides 
Hc = 15 bit and HL = 16 bit, and BCH (15, 7) implies Hc = 10 
bit and HL = 16 bit. 
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Figure 2. MLP histograms for BCH approach, using MSE. 
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We will summarize the Multi-Layer Perceptron number of 
neurons in each layer using the following nomenclature: 
inputs× hidden× output. In our experiments, the number of 
inputs is fixed to 100, and the other parameters can vary 
according to the selected strategy. 
Table 3 shows the results of a single MLP with 40 outputs 
(one-per-class), BCH, and ECOC strategies. 
 
CLASSIFIER STRATEGY MIN (DCF) (%) 
MLP  MEAN σ MIN
100×40×40 1-PER-CLASS 2.37 0.19 1.7 
100×40×14 BCH MAD 3.91 0.41 3.05
100×40×14 BCH MSE 3.07 0.36 2.35
100×40×31 BCH MAD 1.47 0.096 1.17
100×40×31 BCH MSE 1.24 0.094 0.97
100×40×40 ECOC MAD 3.03 0.29 2.43
100×40×40 ECOC MSE 1.7 0.34 1.03
Table 3. Minimum Detection Cost function for several 
strategies. 
 
3.1 Improvements offering several trials to verify. 
One way to improve the face verification application is to 
offer several trials, in a similar fashion than the ATM 
machines, which offer three trials for entering the password. 
In our case, we have evaluated the system with 5 trials per 
person. This is equivalent to a data fusion on the decision 
level (parallel combination) [4]. Figure 3 shows the 
difference. It plots the FAR and FRR magnitudes for 
different thresholds, using a combination of RBF+NN 
(MAD). The output probabilities of each classifier have been 
previously normalized. 
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Figure 3. FAR and FRR offering 1 and 5 trials. 

Those users with a probability higher than the threshold can 
pass, while the others are rejected. With five trials (a user can 
enter if he achieves at least one trial with higher probability 
than the threshold), there is a slight degradation of FAR, and 
a great improvement on FRR. Using a proper threshold 
setup, it is possible to trade-off both magnitudes and to get 
FAR=FRR=0%. In addition, the threshold setup is less 
critical, because there is a wider range of values that provide 
good results. However, we have not worked out more 
exhaustive experimentation of “several trials to verify” 
strategy, due to the limited amount of testing samples. 

4. CONCLUSIONS 
In this paper we have proposed the use of DCT for feature 
extraction in combination with a discriminative MLP 
classifier. Several strategies have been studied, and BCH 
output correction codes outperform classical results, 
providing a minimum DCF equal to 0.97%, while classical 
eigenfaces approach and NN classifier provides 7.14%. 
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