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ABSTRACT 
 
This paper presents some speaker recognition experiments 
using a bilingual speakers set (49), in two different 
languages: Spanish and Catalan. Phonetically there are 
significant differences between both languages. These 
differences have let us to establish several conclusions on 
the relevance of language in speaker recognition, using two 
methods: vector quantization and covariance matrices. 
 

1. INTRODUCTION 
 

This paper deals with speaker recognition [1] (identification 
and verification) with fully bilingual speakers. Thus, we 
extend our previous results published in 1999 [2]. 
We have done a set of experiments with a bilingual database 
in order to establish if the language of the speaker has 
relevance in a speaker identification and verification 
application (mainly if it is more suitable one language than 
other, and if it is possible to recognize with different training 
and testing languages). 
Phonetically there are significant differences between both 
languages. Mainly, the Catalan language has eight vowels 
(see figure 1) and Spanish only five. Although there are only 
nine million people of Catalan speakers in front of four 
hundred million people of Spanish, both languages can be 
used for our purpose. The differences between both 
languages have let us to establish several conclusions on the 
relevance of language in speaker recognition. 
Another important question is that for bilingual speakers in 
conversational speech is quite common the change from one 
language to the other, so it is interesting to evaluate if this 
fact can affect a speaker recognizer. 
For these experiments we have used our previous database 
[3]. An interesting fact is that the Spanish sentences have 
been balanced, but the Catalan ones have been merely 
translated from Spanish. Thus, the database consists of the 
same texts recorded in both languages in the same day, one 
language after the other. Speaker could freely choose which 
the first recording language was. 
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Figure 1: Formants of the Catalan vowels 

 
2. DATABASE 

 
Main characteristics of the database are: 
 4 sessions with different tasks in each session (isolated 

numbers, connected numbers, sentences, text, 
conversational speech, etc.) 

 In each session, tasks were sequentially collected in 
both languages (Catalan and Spanish), uttered from the 
same speaker. Each task was simultaneously acquired 
with two microphones (SONY ECM-66B and AKG C-
420). 

This paper presents results of the fourth session using the 
common text (aprox. 1 min) and the first five sentences 
(approx, 4 seconds lasting each one). 
 

3. SPEAKER RECOGNITION 
EXPERIMENTS 

 
With this database we have made several tests: 
 Speaker recognition with each language: train and test 

in Catalan (CC), train and test in Spanish (SS) 
 Speaker recognition with different train and test 

conditions: train in Catalan and test in Spanish (CS), 
train in Spanish and test in Catalan (SC). 

Two speaker recognition methods have been used: 
1. Vector quantization [4] with LBG [5] algorithm for 
codebook generation (1 codebook for each speaker). The 
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number of parameters used in each model is: 
 
  2Noparameters P= ×   (1) 
where P is the analysis order of the parameterization 
(dimension of LPCC vectors) and No is the number of bits of 
the codebook ranging from 0 to 8. 
 
2. Arithmetic-harmonic sphericity measure [6], which 
implies the computation of a covariance matrix for each 
speaker, and the following measure distance: 
( ) ( ) ( ) ( )1 1log 2logj test test j j testC C tr C C tr C C Pµ − −⎡ ⎤= −⎣ ⎦  (2) 

 where Ci is a covariance matrix and P is its size. 
The trace of the matrices can be computed as: 
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where, ijx , ijx , ijy , ijy  are respectively the elements of the 
matrices X, X–1,Y and Y–1. 
The number of parameters for each speaker is (the 
covariance matrix is symmetric):  

2

2
P Pparameters +

=     (4) 

Although these methods are not the state-of-the-art in 
speaker recognition, they require lower computational time 
than GMM. On the other hand, we are interested on relative 
comparisons, being the recognition algorithm not a critical 
issue. 

 
4. RESULTS 

The results have been obtained with the following 
parameters: 
 49 bilingual speakers. 
 1 read text (about 1 minute and the same text for all 

speakers) for computing the models. 
 5 different sentences (the same for all speakers) for the 

test. 
 No=number of bits of the codebook ranging from 0 to 8. 
 Silence removal 
 Frames of 240 samples with an overlapp of 2/3. 
 Hamming window and pre-emphasis of 0.95. 

We have evaluated the identification and verification results. 
Verification systems can be evaluated using the False 
Acceptance Rate (FAR, those situations where an impostor 
is accepted) and the False Rejection Rate (FRR, those 
situations where a user is incorrectly rejected), also known 
in detection theory as False Alarm and Miss, respectively. 
This framework gives us the possibility of distinguishing 
between the discriminability of the system and the decision 
bias. The discriminability is inherent to the classification 
system used and the discrimination bias is related to the 
preferences/necessities of the user in relation to the relative 
importance of each of the two possible mistakes (misses vs. 
false alarms) that can be done in verification. This trade-off 
between both errors has to be usually established by 
adjusting a decision threshold. The performance can be 
plotted in a ROC (Receiver Operator Characteristic) or in a 

DET (Detection error trade-off) plot [7]. DET curve gives 
uniform treatment to both types of error, and uses a scale for 
both axes, which spreads out the plot and better 
distinguishes different well performing systems and usually 
produces plots that are close to linear. DET plot uses a 
logarithmic scale that expands the extreme parts of the 
curve, which are the parts that give the most information 
about the system performance. For this reason the speech 
community prefers DET instead of ROC plots. 
We have used the minimum value of the Detection Cost 
Function (DCF) for comparison purposes. This parameter is 
defined as [7]: 

  miss miss true fa fa falseDCF C P P C P P= × × + × ×   (5) 
Where Cmiss is the cost of a miss (rejection), Cfa is the cost of a 
false alarm (acceptance), Ptrue is the a priori probability of the 
target, and Pfalse = 1 − Ptrue. Cmiss= Cfa =1. 
 
4.1 Vector quantization results 
 
Table 1 summarizes the results for a vector quantization 
speaker identification method, with parameterizations 
LPCC-12, 16 and 20, and for codebooks ranging from 0 to 8 
bits. 
Although VQ performs well for identification task, reaching 
identification rates up to 100%, the verification task is not so 
successful, and it is outperformed by the next recognition 
algorithm. 
 
4.2 Covariance matrices 
 
The parameter that can be adjusted for modeling the 
speakers is the prediction order (P). That is, the dimension of 
the LPCC vectors. 
 
We have studied several P values (table 2). It is important to 
see that a frame length of 240 samples is used, so for a 
correct LPC parameter estimation, the prediction order must 
not be higher than 24, because then the autocorrelation used 
in the Levinson-Durbin recursion can not be properly 
estimated. For this reason, the recognition rates drop for high 
P values. 
 
Another important fact is that a covariance matrix assumes 
that the modeled distribution is symmetrical. This 
assumption is not made in the VQ approach. Thus, for 
nonsymmetrical distributions the VQ approach could be 
more accurate. 
 

No Num. Parameters (aprox.) P 
0 12 4 
1 24 6 
2 48 9 
3 96 13 
4 192 19 
5 384 27 
6 768 39 
7 1536 55 

Table 3: # of parameters used in VQ (P=12) and CM 
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Figure 2. DET plots for Covariance matrices of sizes 4, 9, 
19, 27, 39 and 55. 
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Figure 3. DET plots for Covariance matrices of size 27 and 
two training/testing scenarios (CC, CS). 
 
Figure 2 compares DET plots for CM-4, 9, 19, 27, 39 and 55 
using training and testing in Spanish. Figures 3, 4  and 5 
compare several training and testing scenarios (CC, CS, SC 
and SS) when using CM-27. 
 
Figures 3 and 4 show a slight degradation when training and 
testing languages are different. In fact, the minimum 
Detection Cost Function (DCF) increases from 3.6% to 4.5% 
and 4% respectively in figures 3 and 4. 
Figure 5 shows that both plots intersect. Thus, we cannot 
affirm that one language produces always better results than 
the other one. 
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Figure 4. DET plots for Covariance matrices of size 27 and 
two training/testing scenarios (SC and SS). 
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Figure 5. DET plots for Covariance matrices of size 27 and 
two training/testing scenarios (SS and CC). 
 
For comparing both methods (vector quantization and 
covariance matrices), we have used parameters No and P 
that require the same storage memory, as we see in table 3. 
 

5. CONCLUSIONS 
 
In this paper we have studied speaker identification and 
verification tasks using a bilingual speaker data set. Main 
conclusions are: 
 
- The Catalan database yields higher identification rates than 
the Spanish one for a high number of parameters. Otherwise 
the Spanish language achieves better rates. We think that 
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this is due to the higher number of vocalic phonemes (8 in 
Catalan against 5 in Spanish). 
 
- With different test and train conditions there is a little 
decrease in identification rate (about 1% for high resolution 
codebooks, and greater values for other models and 
methods) 
 
- For VQ better results are obtained when increasing the 
codebook size. Thus, best results are obtained for the larger 
size: 8 bits. On the other hand, for CM, the model size is 
related with the parameterization order (P value) and the 
optimal is obtained around P=27 for both tasks, 
identification and verification. 
 
- Although VQ achieves the highest identification rates, the 
CM method is faster and in most cases requires less 
parameters for modeling each speaker. Additionally, CM 
provides better verification results, evaluated with the 
minimum DCF value. 
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  No=0 No=1 No=2 No=3 No=4 No=5 No=6 No=7 No=8 
P Train/test Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver 
12 CC 58.8 36.6 69.8 27.9 79.6 21.1 93.1 13.8 98.4 11.7 98 10.3 98.8 9.1 99.6 8.0 100 7.1 
12 CS 49.8 33.7 65.7 25.4 68.6 18.9 87.8 13.4 93.9 12.0 96.3 10.5 97.6 10.0 98.0 9.5 98.8 9.0 
12 SS 64.1 33.0 74.7 24.8 83.7 18.1 93.5 12.4 97.1 11.1 98.8 9.7 99.2 8.2 98.8 7.6 99.2 7.3 
12 SC 47.3 36.9 59.2 28.4 73.1 21.0 90.2 12.2 95.1 12.8 95.9 12.0 98.4 10.7 98.8 10.1 98.4 10 
16 CC 62.4 35.6 72.7 27.0 83.3 20.1 93.5 13.4 99.6 11.9 99.2 11.3 99.6 9.7 100 8.4 100 7.5 
16 CS 55.9 32.6 68.6 24.3 73.9 18.9 88.6 13.6 95.5 12.4 96.7 11.7 97.6 10.1 99.2 9.9 99.2 9.7 
16 SS 68.2 31.7 77.6 23.0 84.5 17.4 94.3 12.5 96.7 11.1 98.4 10.3 98.8 8.4 98.8 8.0 99.2 7.4 
16 SC 53.5 35.3 64.9 26.9 77.6 20.6 92.7 14.7 96.7 13.7 97.1 12.3 98.4 11.7 98.4 10.5 98.8 10.2
20 CC 64.9 34.6 74.3 26.4 86.1 20.9 93.1 15.1 99.6 12.7 100 11.0 100 10.6 100 9.0 100 8.3 
20 CS 57.1 31.9 70.6 24.3 77.1 19.7 88.6 14 96.3 12.9 97.1 11.3 98.8 10.5 99.6 10.0 99.6 9.8 
20 SS 69.0 30.4 80.0 23.1 85.3 17.8 94.3 13.2 97.6 11.1 98.4 9.9 98.8 9.1 99.2 8.1 99.6 7.3 
20 SC 54.3 34.8 64.5 26.6 80.4 20.9 93.9 16.4 97.6 14.6 98.0 12.6 98.0 11.3 98.8 11.0 99.2 10.2

Table 1: Identification rates and DCF (verification) using VQ (S=Spanish C=Catalan), 
 

 P=4 P=6 P=9 P=13 P=19 P=27 P=39 P=55 
Train/test Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver Iden ver 

CC 22.0 25.8 55.9 13.9 82 7.4 91.0 6.4 96.7 5.2 99.2 3.6 99.2 6.6 92.7 9.7 
CS 22.4 28.1 52.7 15.4 77.6 7.6 84.9 6.5 91.8 5.4 95.9 4.5 92.7 8.0 86.1 12.5 
SS 27.3 23.1 65.3 12.3 87.3 6.8 92.7 5.1 97.1 4.2 98.8 3.6 95.9 6.8 90.6 11.0 
SC 22.0 28.4 50.6 16.9 78.4 7.6 88.2 7.4 95.5 6.0 98.4 4.0 95.9 7.5 88.6 11.4 

Table 2: Identification rates and DCF (verification) using CM (S=Spanish C=Catalan) 
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