
 

 

ABSTRACT 

In this paper, we propose a PDE-based method for structure 
preserving regularization of DT-MRI principal diffusion 
vector fields. We defined a structure sensitive function, the 
so-called regularity map, which is derived from the local 
orientation similarity. Regularizing tensor is based on vector 
field only. Regularization results are found quite satisfactory, 
in that even simple tracking algorithms accurately reveal the 
fiber streams in synthetic DTI data. 
 

1.   INTRODUCTION 

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is 
an image acquisition technique, which is aimed to reflect the 
structural properties of fibrous tissues, by measuring the 
diffusion patterns of water molecules. Basically, it fits a 3×3 
symmetric, positive semi-definite tensor to each voxel in 3D 
domain, modeling the water diffusion in every direction. 
Hence, data acquired by DT-MRI can be considered as a 
matrix-valued 3D image, which however mostly suffers from 
noise, as in other MR techniques. The noise, being dependent 
upon the parameters like acquisition time and voxel size, 
necessitates regularization/denoising of data, which becomes 
a crucial step for relaxation of acquisition constraints as well 
as for applications like fiber tractography, segmentation of 
brain tissues and measuring brain connectivity.  
DT-MRI based in-vivo fiber tractography (FiT) is based on 
following the principal eigenvectors of diffusion tensors, 
aiming to track the fibers, which are usually supposed to 
exhibit a regular and anisotropic flow structure. For 
distinguishing the segments of these fiber bundles, Fractional 
Anisotropy (FA) can be used as a conventional scalar metric 
that reflects the dominance of diffusion tensor’s larger 
eigenvalue over the other ones.  
As in [2], traditional PDE based approaches can be exploited 
to regularize the scalar image of FA, for restoring DT-MRI 
data. In fact, PDE methods have been widely used through 
different applications and formulations for solving the 
problem of scalar image denoising since the pioneering work 
of Perona and Malik [1]. In this study, we use their extension 
to the Principal Diffusion Direction (PDD) vector field. 
There are recently derived PDE-schemes, addressed to 
denoising of vector valued fields including color image 

restoration [4], which take possible coupling between vector 
components into account, while performing the regularization 
process on each of them separately. In the context of DT-MRI 
Tschumperlé and Deriche adopted a simple anisotropic 
2D/3D PDE-method acting on the coefficients of the 
diffusion tensor, while adding constraints in terms of 
symmetry and semi-positivity [5]. They also attempted to 
regularize diffusion tensor’s spectral components in terms of 
orientations (eigenvectors) and diffusivities (eigenvalues), by 
proposing a new orthogonal matrix diffusion technique. Apart 
from the use of PDEs, Coulon [2] also used a variational 
approach to restore PDD fields, where they aimed to 
minimize a total variation based energy defined for the 
direction map. On the other hand, topology preserved 
smoothing of vector fields is addressed in [3], where vector 
data is first converted into a scalar representation, treating 
time surfaces as level-sets. By analyzing the dynamic 
behavior of these level sets, they determine distinct flow 
features, and, vector fields are successively smoothed by 
combining geometrical and topological considerations, while 
keeping their flow structure unchanged. In most of these 
studies, especially those which deal with PDD fields, the 
directional indeterminancy of unit vectors, i.e. the 
equivalence condition of antipodal directions is locally 
provided, for instance by an initial eigenvector alignment [5]. 
However this may introduce forged discontinuities or remove 
the actual ones. 
In this paper, we employ anisotropic PDE-methods, for 
efficiently regularizing PDD fields, particularly within and 
along fiber tracts only. As a novel attempt, we let them act on 
the elements of the orientation tensor, a 3×3 symmetric 
positive semi-definite matrix, which is defined as the tensor 
product of PDD vectors solving the above mentioned 
antipodal direction ambiguity. We propose a new robust 
measure called the regularity map as the structure sensitive 
map, which is also derived from the orientation tensor field. 
Coupled with the PDD field itself, the regularity map, which 
accurately reflects the discontinuities between fiber and non-
fiber regions, allows us to design a nonlinear anisotropic 
diffusion system. It can adapt itself to the local structure and 
selectively smooth the vector flow along fiber bundles. 
Another contribution of the proposed method is that the 
smoothing tensor used in filtering is generated based on the 
vector field only. No additional information such as FA map 
is used. Thus the proposed method is applicable to other types 
of vector fields as well. 
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The paper is organized as follows: In section 2, we discuss 
our structure preserving smoothing objectives. Section 3 and 
4, propose the vector orientation field as the matrix-valued 
image to be regularized, and regularity map f as the structure 
sensitive function, respectively. Section 5 defines our 
regularizing diffusion process. Finally, in section 6 we give 
regularization and tracking results on synthetic data and in 
section 7 we make our conclusions. 
 

2.  THE DESIGN OBJECTIVES 

PDD vector field of DT-MR images, consists of 3D unit 
vectors (principal eigenvector of diffusion tensors). In Figure 
1. two physiological segments are synthetically distinguished 
as regions shaded with gray corresponding to a non-fiber and 
white for fiber. Note the difference in the regularity of the 
PDD in both regions, where the fiber wall is defined as the 
interface inbetween, i.e. the discontinuity to be preserved. 
Briefly, in order to achieve accurate tracts from FiT 
algorithms, we simply aim to improve the regular flow within 
and along those tracts while keeping the randomness in 
nonfiber areas, retaining and preferably enhancing their 
boundary. In other words PDEs to be employed have to 
accomplish the following diffusion patterns:  

• Isotropic and strong smoothing inside fiber region 
• Isotropic and weak smoothing inside non-fiber 

region 
• Anisotropic smoothing along fiber wall 

 
3.  THE VECTOR ORIENTATION FIELD 

We considered the so called vector orientation field V, 
instead of PDD vectors v themselves, as the basis of 
regularizing diffusion because the directional differences, 
especially those of neighboring antipodal vectors introduce 
large synthetic discontinuities. The orientation field V is 
simply computed by taking the tensor product of PDD 
vectors, which maps them from R3 to R6 (symmetry allows us 

to take the upper triangular 6 coefficients of the resulting 
orientation tensor), preserving distances but assigning 
antipodal ones to the same term: 
 

TvvV =  
 
Clearly, V’s principal eigenvector is still v with the 
corresponding largest eigenvalue 1, and 0 for the others. From 
now on, as in [5], its coefficients can be treated as separate 
channels of a multi-valued image, during the regularization 
process. 
 

4. THE REGULARITY MAP 

An immediate candidate for the structure sensitive function 
that distinguishes between fiber and non fiber tissues, would 
be the FA map which is widely used with DT-MRI data. 
However as it can be seen for the phantom rings in Figure 2 
(left), it can exhibit noisy characteristics inherited from 
diffusion tensors. FA also discards the knowledge of 
dominant flow direction. A better choice would be a 
regularity map, f, which utilizes the similarity within a given 
neighborhood of vectors in terms of their orientations. f is 
defined as  
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where V� = K(�)*V is a smoothed version of V convolved 
with a spherical 3D Gaussian kernel K(�) having a standard 
deviation �, which can be selected according to the resolution 
of data. 

321 λλλ ≥≥ are the magnitude ordered 

eigenvalues of V�, with their average λ . Smoothing of V 
with the Gaussian kernel, makes its second and third 
eigenvalues nonzero to the extent of the local PDD 
irregularity. For locally coherent regions, typically for fiber 
interiors, the diffusivity contained in these second and third 
eigenvalues will still be small, resulting in a high anisotropy, 
i.e. a large f, close to 1. On the other hand, non-fiber regions, 
where vectors within a neighborhood exhibit a rather random 
structure, result in a spherical distribution of diffusivity over 
the three eigenvalues of V� and concordantly in a low f, close 
to 0. As it can be seen from Figure 2 (right), f reflects the 
desired structure, especially at fiber walls, as critical 
discontinuities to be preserved. 
 

5.  THE REGULARIZING DIFFUSION 

The anisotropic diffusion PDE, that we separately apply on 
the 6 upper triangular coefficients of the orientation tensor V 
is formulated as: 
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Figure 1: Top: Geometry of ring phantom used in this 
study, Bottom: Its zoomed PDD field (top view) with 

indicated regions of concern 



 

 

where D is the 3×3 symmetric, positive semi-definite, 
smoothing tensor to be determined according to the desired 
regularization characteristics. D drives the regularizing 
diffusion process by enhancing or suppressing the amounts of 
smoothing selectively along its eigendirections. D is defined 
as: 
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�i’s determine the diffusion (i.e. the extent of smoothing) 
along ei. Setting ei’s and �i’s is the crucial point of the 
proposed algorithm. We would like to have (i) the dominant 
diffusion to be along the fiber orientation around the fiber 
wall (ii) isotropic diffusion away from the fiber wall (iii) the 
average diffusion to be higher inside the fiber than outside. 
We defined ei’s, to meet the above goals, as follows: 
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e1 is tangent to the fiber wall and is close to the local DTI 
vector v, e2 is perpendicular to the fiber wall and e3 is defined 
to be orthogonal to e1 and e2. Corresponding eigenvalues of 
D, giving the weighted amounts of directional smoothing, are 
given as: 
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where the diffusivities g and h are defined as: 
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with their parameters DC ,,κ , ρ  and η  having been 
determined empirically. Note that both g and h with a 
common range of [0,1], are monotone sigmoid functions of 
their arguments. Thus, for fiber interiors, with typically large 
f and small |||| f∇ , all weights become close to 1, resulting in 
a large isotropic smoothing, while for either side of the fiber 
wall only the first weight, i.e. the one which acts parallel to 
the PDD flow will be large, and in fact proportional to the 
local regularity. For detailed distribution of those weights see 
Figure 2, (bottom), where the corresponding eigenvalues of D 
are indicated as diagonal elements for each of 4 different 
types of local structure. 
 

6.  EXPERIMENTAL RESULTS 

In our experiments, with typical diffusion values, high 
resolution mathematical ring phantoms (with FAfiber=0.82, 
FAnonfiber=0.13) are used, where all fiber diameters were 
chosen to be 1 unit [7]. Data contains Gaussian noise added to 
real and imaginary parts of each complex MR signal where 
signal to noise ratio (SNR) is defined as the reciprocal of 
noise standard deviation. Figure 1 shows the geometry of ring 
phantoms, and the associated noisy PDD field with SNR=8. 
We iteratively smoothed each of 6 scalar upper triangular 
channels of the vector orientation field V, using the above 
defined diffusion process with a time step of  �t=0.25 and 
until the weighted regularity f in fiber regions reaches a 
certain threshold �. Weighting is done by masking f with its 
initial nonlinear map g(f). Restored field is generated by 
taking the principal eigenvector of V. Figure 4 shows the 
regularization results with the optimum set of parameters, 
which are empirically set to 5.0=σ , 710=C , 6=κ , 

4=D , 06.0=ρ , 8=η  and 95.0=τ . We also examined the 
performance of the proposed method by tracking the fibers, 
comparatively in both original and restored fields. Figure 4 
shows fibers that are initiated at identical seed points, which 
are randomly selected within fibers. PDDs are linearly 
interpolated at successive track points. Extracted tracts 
consist of at most 1000 vertices, spaced with a step size of 0.5 
× voxel-width. For the original PDD field, conventional 
termination criterion is used, which is FA falling below 0.15 
with curvature < 20o (Figure 4 (top)). For the restored field 
we used the regularity map f falling below 0.80 and again 
with  curvature < 20o (Figure 4 (bottom)). 

 
Figure 2: Top-Left: Noisy FA map; Top-Right: Regularity 

map f from the same noisy field, Bottom: An enlarged 
frame of discontinuity, with corresponding structure 

sensitive measures f and |||| f∇ , and the eigenvalues of the 
smoothing tensor ( 10 <<<<< εγ ). 

 



 

 

 
Figure 4:  Tracking results before and after regularization 

of PDD field 

 
7.  CONCLUSIONS 

The method is sensitive to the structure in a vector field. It 
can differentiate regular and irregular regions without using 

additional information, thus it is applicable to other vector 
fields than the DTI data. Simulation results in phantom data 
with even low SNR values are very promising, in that the 
proposed PDE-based smoothing scheme rapidly converges to 
highly regular vector fields for fiber interiors, while 
preserving discontinuities and keeping the non-fiber regions 
almost unchanged. No leakage of region characteristics is 
observed. Using f as the termination criteria of the tracking 
process, allows us to prevent the tracts diverge from their 
actual routes. We evaluated the performance of the proposed 
regularization scheme visually. In our future studies 
quantitative performance criteria will also be provided. The 
method requires to be examined in other phantom geometries 
and real patient data as well.  
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Figure 3:  A 30×30×3 subvolume of original and regularized PDD fields with their fiber walls indicated. Signal to noise ratio 

(SNR)=8, Sampling interval (fs)=0.2mm, 5.0=σ , 710=C , 6=κ , 4=D , 06.0=ρ , 8=η  and 95.0=τ . 
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