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ABSTRACT 
Recently, biclustering algorithms have been used to extract 
useful information from large sets of DNA microarray ex-
perimental data. They refer to a distinct class of clustering 
algorithms that perform simultaneous row-column cluster-
ing. The goal is to find submatrices, that is, subgroups of 
genes and subgroups of conditions, where the genes exhibit 
highly correlated activities for every condition. Almost all 
of the methods proposed in the literature search for one or 
two types of bicluster among four. Also, most of the pro-
posed methods rely on solving an optimization problem. 
Therefore, the method is dependant on the optimally crite-
rion which most of the time, is likely to miss some signifi-
cant biclusters. In this study, we develop a Robust Biclus-
tering Algorithm to address the two issues mentioned 
above. The proposed algorithm is simple because it uses 
basic linear algebra and arithmetic tools and there is no 
need to solve an optimization problem.  

1. INTRODUCTION 

The data obtained from DNA microarray experiments is usu-
ally in the form of large matrices of data illustrating the ex-
pression levels of genes, rows of the matrix under different 
samples such as tissues or experimental conditions, columns 
of the matrix. Investigations show that more often, several 
genes contribute to a disease; also, many activation patterns 
are common to a group of genes only under specific experi-
mental conditions. These facts motivate researchers to iden-
tify a subset of genes whose expression levels exhibit a co-
herent pattern under a subset of conditions. Discovery of 
such pattern is therefore essential in revealing the significant 
connections in gene regulatory networks.  
The biclustering algorithm was first used by Cheng and 
Church in [2] to extract such patterns from large sets of ex-
perimental data. It refers to a distinct class of clustering algo-
rithms that perform simultaneous row-column clustering. 
The goal is to find submatrices, that is, subgroups of genes 
and subgroups of conditions, where the genes exhibit highly 
correlated activities for every condition. Many other biclus-
tering algorithms have been proposed in the literature to per-
form such task [2 - 8]. Almost all of the proposed methods 
search for one or two types of biclusters among four types 
that have been identified in the literature [1]: biclusters with 
constant values, biclusters with constant values on rows or 

columns, biclusters with coherent values, and biclusters with 
coherent evolution. Also, most of the proposed methods rely 
on solving an optimization problem. Therefore, the method is 
dependant on the optimally criterion which most of the time, 
is likely to miss some significant biclusters. For example, 
biclustering algorithms based on greedy methods rarely find 
the globally optimal solution consistently, since they usually 
don't operate exhaustively on all the data.  
In this study, we develop a Robust Biclustering Algorithm 
(ROBA) to address the two issues mentioned above. The pro-
posed algorithm is simple because it uses basic linear algebra 
and arithmetic tools and there is no need to solve and optimi-
zation problem.  We illustrate the proposed algorithm here by 
focusing on the identification of biclusters with constant val-
ues, biclusters with constant values on rows, biclusters with 
constant values on columns, and biclusters with coherent 
values.  
The rest of this paper is organized as follows. After a quick 
description of gene expression matrix in section 2, we per-
form a quick review of previous biclustering algorithms and 
their limitations in section 3. We develop part of the Robust 
Biclustering Algorithm in section 4. In section 5, we show 
some simulation results and compare the performance of our 
algorithm with previous ones.  

2. GENE EXPRESSION MATRIX 

A DNA microarray data is an NxM matrix A whose rows rep-
resent the genes, its columns the experimental conditions, 
and anm is a real number that represents the expression level 
of gene n under condition m. 
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rn = [ an1 an2 … anm … anM], cm = [a1m a2m … anm … aNm]T 
Conditions = [Condition1 … Condition m  …  Condition M] 
Genes = [Gene1   Gene2    Gene 3  …   Gene n …  Gene N]T 
The row vector rn corresponds to the expression levels of the 
nth gene under M conditions. The column vector cm corre-
sponds to the expression levels of the N genes under the mth 



condition. The row vector Conditions (1xM) and the column 
vector Genes (1xN) are label vectors. They are defined to 
keep track of every condition and gene. 

3. PREVIOUS WORKS 

As mentioned above, there exists an extensive literature on 
biclustering techniques, e.g., [2-8]. Most of those previous 
techniques are greedy and will miss meaningful biclusters. 
Some, such as [8], are exhaustive. To ensure a reasonable run 
time, exhaustive techniques will restrict the maximum size of 
the bicluster. Also, almost all of the previous techniques used 
a cost function to define biclusters. For example, the cost 
function can measure the square deviation from the sum of 
the mean value of expression levels in the entire bicluster, 
and the mean values of expression levels along each row and 
column in the bicluster.  
In contrast, in our approach, we operate on all the data and 
we do not limit the number of genes that can appear in a bi-
cluster. Secondly, we use a deterministic method that allows 
the user to identify all qualified biclusters in each type. Spe-
cifically, we consider each type of bicluster defined above, 
and unlike prior work, we proceed by identifying the number 
of biclusters they contain by decomposing the gene expres-
sion matrix into its distinct elements which later run, allow us 
to get a hand on all of the qualified biclusters. This approach 
avoids the need for exhaustive enumeration or heuristic cost 
functions that can miss some pertinent biclusters. We propose 
an effective algorithm to mine biclusters. Compared with 
other biclustering approaches, our method is deterministic in 
that it discovers all qualified biclusters, while previous bi-
clustering approaches are random algorithms that provide 
only an approximate answer.  

4. ROBUST BICLUSTERING ALGORITHM (ROBA) 

The Robust Biclustering Algorithm is made up of three main 
parts. The first part consists of performing the data condition-
ing, to get rid of the noise and to solve the problem of miss-
ing values. The second part consists of decomposing the data 
matrix A into its elementary matrices. The third part consists 
of extracting any type of biclusters defined by the user. 
 

4.1 Data Conditioning 
 

The first part of ROBA consists of performing the data condi-
tioning due to the fact that we are not only working with 
noisy data but also the DNA experimental data contains miss-
ing values. Many techniques to recover missing values have 
been developed in the literature [9, 10]. In this study we have 
used the zero method that is replacing each missing value by 
zero. To deal with noise, we first identify the number L of 
distinct values αl that constitutes the gene expression matrix 
A next, we redefine αl using equation 1. 
 

                              αl = (bl+bl-1)/2                 (1)                                    

Where:  bl = b0 + le, with l = 1 to L, e = (bL-b0)/L,                
b0 = min ([anm]) and bL = max ([anm]). The interval   [b0  bL] 
is then divided into L equal intervals. [b0  bL] = [b0 b1[ U … 
U [bl-1 bl[ U … U [bL-1 bL]. Finally, a new data matrix is ob-
tained using Algorithm1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Gene Expression Matrix Decomposition 

 

The second part of ROBA consists of decomposing the ma-
trix A into its elementary matrices. Given that A is made up 
of L distinct values, A can be decomposed using equation 2. 
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are binary NxM matrices, l
nr ’s are binary 1xM vectors 

and l
mc ’s are binary Nx1 vectors.  

 

4.3 Biclusters Identification 
 

4.3.1   Biclusters with Constant Values 
 

A biclusters with constant values is any submatrix B (IxJ) of 
A whose elements are constant:  
 

                B = [aij]= µ.Ones(I,J)                 (3)  
 

With:  aij = µ, i = 1 to I, j = 1 to J. Such matrices represent 
subgroups of genes with constant expression levels under 
different conditions or vice versa. From (2), such matrices 
can be obtained by analyzing each Al separately to obtain 
subgroups of genes that have constant expression level αl 
under different conditions. Since Al, is a binary matrix, and 
since the number of genes N is always greater than the num-
ber of conditions M, the number of biclusters (Nb) with con-
stant values can be defined using equation (4). 
 

             ∑
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l
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                                   (4) 

Pl is the number of distinct rows l
ir  of each Al whose sum is 

greater than 0, that is; sum( l
ir ) > 0. Each distinct row l

ir of 
Al constitutes the principal row element of the ith biclus-
ter l

iB of the matrix Al considered. Therefore, in order for any 

other row l
nr  of Al to belong to the ith bicluster, equation (5) 

has to be verified: that is the element wise product of the two 
given row vectors. 
 

               l
i

l
n

l
i rrr =*.                                     (5) 

 

Algorithm 1 
 
Input A = Microarray Data 
Compute: L, bL, b0, e, bl, αl 
For l = 1 to L 

For n = 1 to N 
For m = 1 to M 

If anm Є [bl-1 bl[ 
anm = αl 

End 
End 

End 
End 



With: i = 1 to Pl, n = 1 to N, and l = 1 to L. Algorithm 2 is 
then used to extract biclusters that have constant expression 
level αl. 

 

4.3.2 Biclusters with Constant Values on Columns 
 

A bicluster with constant values on column is any submatrix   
B (IxJ) of A which has one of the following forms:B = [aij], 
with aij = µ + βj additive model or aij = µ.βj, multiplicative 
model. The general form can be represented using equation (6). 

 

                  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

......
...

......

21 JB µµµ
                   (6) 

 

In a DNA microarray experimental data, they represent a 
subgroup of genes with same evolution under a subgroup of 
conditions. From (2), the number of such biclusters (Nb) is 
given by equation (7). 
 

             Nb = Pc                                          (7) 
 

Pc is the number of distinct columns jc  of the entire Al 

whose sum is greater than 0; that is; sum( jc ) > 0 . Each 

distinct column jc of the entire Al constitutes the principal 

column element of the jth bicluster jB . Therefore, in order 

for any other column l
mc  of any Al to belong to the jth biclus-

ter, equation (8) has to be verified: that is the element wise 
product of the two given column vectors. 
 

                   j
l
mj ccc =*.                                  (8) 

 

With:  j = 1 to Pc, m = 1 to M, and l = 1 to L. Algorithm 3 is 
then used to extract biclusters that have constant values on 
columns. 
 

4.3.3 Biclusters with constant values on rows 
 

A bicluster with constant values on rows is any submatrix       
B (IxJ) of A which has one of the following forms.B = [aij], 
with aij = µ + αi additive model or aij = µ.αi, multiplicative 
model. The general form of such biclusters can be repre-
sented using equation (9). 
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In a DNA microarray experimental data, they represent a 
subgroup of conditions that exhibit same evolution under a 
subgroup of genes. From (2), the number of such biclusters    
(Nb ) is given by equation (10). 
      
 Nb = Pr                                               (10) 
Pr is the number of distinct rows ir  of the entire Al whose 

sum is greater than 0, that is; sum ( ir ) >0. Each distinct 

row ir of the entire Al constitutes the principal row element 

of the ith bicluster iB . Therefore, in order for any other row 

l
nr  to belong to the ith bicluster, equation (11) has to be veri-

fied: that is the element wise product of the two given row 
vectors. 
 

                 i
l

ni rrr =*.                          (11) 
 

With i = 1 to Pr, n = 1 to N, and l = 1 to L. Algorithm 4 is 
then used to extract biclusters that have constant value on 
rows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.4 Biclusters with Coherent Values 
 

A bicluster with coherent values is any submatrix B (IxJ) of A 
which has one of the following forms. B = [aij], with aij = µ 
+ αi + βj additive model or aij = µ.αi.βj, multiplicative model. 
In this study, we will only deal with additive model. B = [µ + 
αi + βj] = [µ] + [αi ]+ [βj] can be viewed as the sum of three 

Algorithm 2 
 
Compute: Pl, ri

l,rn
l 

For l = 1 to L 
For i = 1 to Pl  

 [];=l
iB    

  For n = 1 to N  

   If l
i

l
n

l
i rrr ==*.  

  Bi
l = [Bi

l  ;  [Genes(n)    αl ri
l ]] 

   End 
  End 
 End 
End; Bi

l = [[0  Conditions];   Bi
l]; 

Algorithm 3 
 
Compute: Pc, cj, cm

l 
      For j = 1 to Pc 

[];=jB  

For l = 1 to L  
  For m = 1 to M 

  If j
l
mj ccc ==*.  

      Bj
 = [Bj

    [Conditions(m) ;   αl cj ]] 
   End 
  End 

End; Bj
 = [[0  Genes]    Bj]; 

End 

Algorithm 4 
 
Compute: Pr, ri, rn

l 
For i = 1 to Pr 

[];=iB  
For l = 1 to L   

  For n = 1 to N  

   If i
l

ni rrr ==*.  
  Bi

 = [Bi
  ;  [Genes(n)    αl ri ]] 

   End   
End 

 End; Bi
 = [[0  Conditions];   Bi]; 

End 



matrices: B1 with constant values, B2 with constant values on 
rows, and B3 with constant values on columns. Therefore, to 
obtain biclusters with coherent values from a DNA microar-
ray experimental data, the following approach can be used. 
Approach: The Gene expression matrix A is first written as 
the sum of three matrices Z1 , Z2, and Z3 where Z1 is a matrix 
with constant values, Z2 a matrix with constant values on 
columns and Z3 = A – (Z1 + Z2). Next, use algorithm 4 to 
extract all biclusters with constant values on rows from Z3. 
Next, add them back to their corresponding matches into Z1 
and Z2 and finally, obtain subgroups of gene with coherent 
values. 
Note that, the choice of the matrix Z1 + Z2 which has con-
stant values on columns is not arbitrary. It must be con-
structed using each row of the gene expression matrix A that 
is also part of the bicluster with coherent values see the bel-
low property.  
Property: Let X be a matrix that contains a bicluster with 
coherent values embedded within its structure. By subtract-
ing from X a matrix Y that has constant values on columns, 
and which is constructed using a row of X that is also part of 
the bicluster with coherent values, the result is a matrix Z that 
contains a bicluster with constant values on rows embedded 
within its structure and located at the same address as the 
bicluster with coherent values. See [13] for proof.  
Since we do not have any knowledge about the rows of the 
gene expression matrix A, we iteratively construct the matrix 
Z1 + Z2 which has constant values on columns using each 
row of A. After each construction, obtain Z3 = A – (Z1 + Z2), 
use algorithm 4 to extract all biclusters with constant values 
on rows from Z3, add them back to their corresponding 
matches into (Z1 + Z2) and obtain biclusters with coherent 
values. 

5. SIMULATION RESULTS AND CONCLUSION 

As in [11], we implemented the proposed biclustering algo-
rithm in Matlab and tested it on the yeast gene microarray 
data that can be found at [12]. The data consists of 2884 
genes and 17 conditions. Initially, the data contained L = 206 
distinct values. We had bL = max[anm] = 595 ,                        
b0 = min[anm] = 0 thus    e = 2.8883 , and  bl = b0 + le = 
2.8883l, with l = 1 to L. After data conditioning, we obtained 
L = 111 new distinct values. Then from our simulation, we 
obtained Nb = 10225 biclusters with constant values,      Nb = 
3391 biclusters with constant values on rows, and Nb = 836 
biclusters with constant values on columns. Because of the 
large number of biclusters found, we will present here a few 
illustrative results that will help the reader grasp the magni-
tude of the problem and the nature of the results produced by 
the algorithm. Figure 1 shows an example of biclusters with 
constant values, biclusters with constant values on rows and 
biclusters with constant values on columns obtained. Figure 2 
shows an example of biclusters with coherent values ob-
tained. A complete discussion of the results can be found in 
[13]. Finally note that the proposed algorithm has perform-
ance advantages over previously reported approaches. The 
proposed algorithm does not rely on solving an optimization 
problem. It can be used to search for any type of biclusters 

defined by the user in a timely manner. After data condition-
ing which takes approximately 250s, it takes less than 10s to 
get a bicluster. Thus its running time is better than that of [2] 
which reportedly takes 300-400s to find a single bicluster. As 
future work, we will be focusing on the biological meaning 
of the results obtained.   
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Figure 1: Example of biclusters with constant values, biclusters with 
constant values on rows, and biclusters with constant values on columns 
obtained. The x axis represents the conditions, the y axis the genes and z 
axis the expression level 

Figure 2: Example of biclusters with coherent values. Each line 
represents different genes. 
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