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ABSTRACT 

The paper shows an efficient detection and tracking al-

gorithm that is based on the adaptive optimal orthogonal 

parameterisation. The model parameters, being a solution to 

second-order signal prediction, are updated at every time-

instant, thus making this approach well adapted to detection 

and tracking problems. The proposed approach is robust in 

the sense of resistance to the continuously present noise. The 

innovations filter proposed as the transient signal detector is 

a lattice structure optimal orthogonal filter that is character-

ized by an extremely fast start-up performance and excellent 

convergence behaviour. At every sample the proposed 

method calculates recursively a set of reflection coefficients, 

which we propose to use in detection and second-order signal 

description. We demonstrate performances of the proposed 

approach by introducing the Receiver-Operating Characteris-

tics curves in different algorithm aspects and for different 

SNR. The algorithm is well suited to the real-time applica-

tion. 

 

1. INTRODUCTION 

Signal detection is one of the applications used in signal 

processing. In our case, the characteristics of the signal to be 

detected are in general unknown. By the signal we mean a 

non-stationary broadband or band limited transient signal 

with unknown amplitude and unknown time of arrival. We 

are placed in the situation where the probability of signal 

appearance is difficult to estimate and thus we propose to 

use the Neyman-Pearson criterion to deduce the presence of 

the signal [1].  

One possible approach is to model the given signal in 

order to extract its intrinsic characteristics, namely the pa-

rametric linear filters (autoregressive, moving average auto-

regressive). The method proposed by Schur and in signal 

processing literature known as the innovations filter falls 

into this approach [2][3]. Based on the principle of this filter, 

the algorithm serves to calculate the model parameters: i.e. 

reflection coefficients, forward and backward prediction 

errors using each new signal sample (see eq. 4-6) [4].  

For the detection task we define a likelihood ratio test 

(LR) based on the reflection coefficients. The LR test is per-

formed at each time-instant thus giving the detector excellent 

time-reaction properties. Moreover, the reflection coefficients 

describe efficiently and entirely the second order signal. Re-

garding values of the coefficients from different sections of 

the innovations filter we can deduce not only the presence of 

the transient signal and thus segment the signal (transient 

signal present, transient signal absent), but try to describe 

these different parts by reflection coefficients which could be 

used later in defining patterns of different events (identifica-

tion of the signal). 

The objective of our research is justified by the fact that 

our laboratory works in collaboration with biologists and is 

interested in the detection and identification of transient 

non-stationary acoustic signals emitted by whales which 

spend most of the time under water. The aim is to propose 

the passive real-time tracking system to detect, identify and 

track certain species of marine mammals.  

2. METHOD 

The innovations filter is presented in fig.1. The filter 

consists of P equal sections (Θ(k,t); k=1…P); P is the order 

of the filter representing the number of sections. Each filter’s 

section is described entirely by the reflection coefficient ρ . 

For each new signal sample, the entirety of the coefficients is 

calculated. 

 

Fig. 1 Scheme of the innovations filter 

 

The requisite number of sections P depends on the type of 

the signal. In fact the estimation quality is a function of the 

decreasing rapidity of covariance function )(kc  where k is a 

time-lag: 



• if the rapidity is high (for broadband signals), estimation 

quality adjusts slowly and as a result we need to use the 

Schur filter of high order P, 

• if the rapidity is low (for narrowband signals), estima-

tion quality adjusts quickly – lower P order filters. 

To reduce the number of steps, the reflection coefficients are 

updated based on their previous values (see eq. 4-6). In fact, 

the innovations filter is the time-order recursive algorithm 

that causes algorithm complexity reduction (diminution of 

needed time computation). Also, using available processors, 

this method can be used for real-time application such as for 

example a real-time underwater tracking system. This is one 

reason this technique has recently regained interest [5]. 

 

2.1 Algorithm 
 

The innovations filter is in fact an optimal orthogonal linear 

prediction filter. At every time-instant the filter calculates an 

optimal value of the signal at instant t  regarding all its past 

values. The solution of the prediction is founded by the or-

thogonal projection of the actual signal value on its past 

manifestation. The importance of the signal’s past manifesta-

tion is steered by the forgetting factor λ  [4][8]. 

The steps of the algorithm:  

1. Initialization: 

• Signal normalization for t=0: 
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• model parameters calculations (eq. 4-6) 

where c denotes the estimated value of the signal’s variance, 

y is the signal, ε  is a small positive value to avoid division 

by 0 in case when 00 =y  and ]1;0[∈λ  is the forgetting fac-

tor. The variance is used in the algorithm’s normalisation 

step, guarantying numerical stability of the algorithm (all the 

filter’s quantities are within 0 and 1).  

Each section of the filter is defined by a set of three re-

cursive equations: 
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where ),1( tn +ρ , ),1( tne +  and ),1( tnr +  denote respec-

tively reflection coefficient, forward and backward prediction 

errors on the (n+1)th section at the time t. 
We propose to analyze the energy of the reflection coef-

ficients from all the filter’s sections to choose the number of 

required sections. Moreover, this number, once fixed, can be 

updated with some periodicity. The important characteristic 

of the proposed filter is that it is not needed to change the 

structure of the filter, but only to eliminate or add new sec-

tions without recalculating previously calculated values of 

the reflection coefficients. 

 
Fig.2 Proposition of the innovations filter order’s choice 

 

2.2 Adaptive approach 
 

The updating of the reflection coefficients makes this 
technique an adaptive approach and, consequently allows us 

to work on non-stationary signals. The forgetting factor λ  

mentioned in section 2.1 was introduced much like those 

found in the other algorithms (LMS, RLS) [6]. The role of 

this factor is to minimize the weight of previous values as 

compared to the new signal samples. The value of this factor 

could either be fixed a priori or calculated adaptively in rela-

tion to the signal statistics and particularly the energy of the 

forward prediction error from the last section of the filter: a 

relatively constant weak value is proof of the signal’s (quasi) 

stationariness and on the other hand, relatively strong and 

violent changes denote variations in the signal in the sense of 

second order statistics: i.e. the signal represents non station-

ary variations. 

In [8] an adaptive method of calculation of the forgetting 

factor )(tλ  was proposed:                                      

( ) ( ) ( ) ( )( )1111 −−−+−= tRtt eµµλλ                    (7) 
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where µ  serves to set the convergence speed of the adapta-

tion of the forgetting factor and ( )1−tRe  is the output energy 

error (on the section P-th). In practice, we initialize with a 

value of the forgetting factor close to unity i.e. ( ) 11 =λ  (to 

speed up the estimation of the variance of the filtered signal) 

and after observing the signal’s characteristics we diminish 

and adapt this value to changes of the signal’s statistics (via 

( )1−tRe ). 

In fig.3 we presented an example of the signal composed 
of 4 different stationary sine modes (see subplot 1). The ad-



aptation scheme of λ , which takes into consideration the 

value of the output error (see subplot 3), calculates the ap-
propriate value of the forgetting factor and thus we can mark 

out two different situations: 

a) during quasi-stationary parts of the signal we have a 

long-term estimator of the variance ( λ  close to 1); 

b) during non stationary parts of the signal i.e. appear-

ance/disappearance of the sine modes we have a 

short-term estimator of the variance ( 1<λ ); 

In fact, the influence of the forgetting factor on the algo-

rithm performances is of great importance. We can distin-

guish two different situations: 

• for small values of λ  (i.e. in practise 8.0<λ ) one 

finds a high variance of the model parameters esti-

mators, but the algorithm adapts quickly to the sec-

ond-order signal variations; 

• for large values of λ  (i.e. in practise 8.0≥λ ) one 

finds a low variance of the model parameters esti-

mators, but the algorithm adapts slowly to the sec-
ond-order signal variations; 

 
Fig.3 Use of the adaptive forgetting factor λ 

One has to make a compromise between the speed of algo-

rithm reaction and the estimators’ variance (we call it the 

“stability/plasticity” compromise). 

We can easily track the signal statistics by analysing the 

matrix of the reflection coefficients 

{ }];1[);,(),( Pktktk ∈=Θ ρ  where P is a number of the 

innovations filter sections and t is the time instant (see fig.1). 

The reflection coefficients tend to gravitate towards their 

optimal values when the signal is (quasi) stationary. When 

the intrinsic characteristics of the signal change, the reflec-

tion coefficients change as well. These variations allow us to 
carry out two important steps: 

• The analysis of the reflection coefficients varia-

tions leads to a signal detection/segmentation. All 

new variations of the reflection coefficients (de-

fined by their derivative), having a value bigger 

than a fixed threshold, give a new segment of the 
signal; 

• It is possible, through analysis of the reflection co-

efficient, to characterize the signal, or carry out an 

advanced detection. We observe and save the re-

flection coefficients from all or selected sections 

and can envisage further classification of seg-
mented signal regions (signal identification). 

2.3 Detection and tracking algorithm 
 

We decided to base our detector on the innovations filter 

as a consequence of its aforementioned characteristics and 

the results obtained during the simulations phase.  

In contrast to the energy detectors working on the sam-

ples of the signal, our detector takes into account changes in 

the reflection coefficients meaning variations of the signal’s 
covariance. The analysis of the reflection coefficients from 

different filter sections allows us find if the signal under 

question is present or absent. 

In order to deduce the presence of the signal we defined a 

likelihood ratio (LR) test as: 
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where P is the filter order, nρ  denotes the Schur time-

varying coefficient on the n -th section and η  denotes com-

parison threshold. 0H is a null hypothesis: i.e. absence of the 

signal, and 1H  is an alternative hypothesis: i.e. presence of 

the signal. 

The detector calculates at every time-instant the LR and 

compares this value with the value of the thresholdη : 

a. If η>LR  then signal is present, 

b. If η<LR  then signal is absent. 

The advantage of our approach is that the innovations fil-

ter based detector is sensitive for the signal’s statistics 

changes and not changes in the signal’s shape (energy). This 

algorithm has the capability of detecting every non-stationary 

event in the analysed signal even if the power ratio is sub-

stantially weak (fig.4).  

As mentioned before, the innovations filter tracks all 

changes in the second-order signal. In fact, the reflection 

coefficients reflect the signal’s covariance changes. In our 

application it means that at the moment of the non-stationary 

transient signal’s existence, reflection coefficients change 

their values drastically. Therefore, in analyzing these changes 

and particularly their derivatives we are able to detect and 

segment different events in the time-series. 

We illustrate here our approach with simulated signals. 

The detection process is made by transient estimation via the 

reflection coefficients analysis. The results presented below 

demonstrate the performances of the proposed method. The 

results obtained on real underwater acoustic signals are pre-

sented in [9]. 

 The simulated signal is composed of the continuously 

present noise and present or absent transient signal. In fact, 

the resulting signal-to-noise ratio (SNR) calculated on the 

support of the transient signal depends on the amplitude and 

bandwidth ratios of the signal and the noise. The signal-to-

noise amplitude and bandwidth ratios were chosen as fol-

lows: Amplitude ratios: 
2
2

2
1

σ

σ
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Bandwidth ratios: 
2

1

B

B
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where )2(1
2σ denotes the variance of the transient signal (and 

respectively noise) and )2(1B denotes the bandwidth of the 

transient signal (and respectively noise). 

 The influence of these two ratios is not the same. The 

analysis demonstrated that this importance for the amplitude 

ratio is of the linear-type (match respectively 

“A”,”B”,”C”,”D”,”E” points together) and for the bandwidth 

ratio is of the exponential-type (fig.5). 
 

 
Fig.4 Receiver-Operating Characteristics of the innovations 

filter based detector for different values of SNR 

 
Fig.5 Power of the detector (false alarm probability=0.05) as 

a function of SNR for different values of amplitude (AR) and 

bandwidth (BR) ratios 

 
Fig.6 Receiver-Operating Characteristics of the innovations 

filter based detector for different values of the filter’s order P 

(example for SNR= -13dB) 

The performances of the detector depend on the filter’s order 

as well. The choice of the filter order depends on the filtered 

signal and was described in section 2. One has to take into 

consideration the real-time aspect as primordial in our appli-

cation and thus find a compromise between the performances 

of the detector and the required computation time which line-

arly depends on the number of filter’s sections. 

3. CONCLUSION 

In this paper, we have demonstrated a new perspective on 

the innovations filter dedicated to the signal processing ap-

plication, particularly for signal detection and characteristics 

tracking. We provided a short description of the innovations 

algorithm and discussed the influence of the model parame-

ters. We have introduced different criteria in order to deter-

mine the filter order and to guarantee a satisfactory algo-

rithm convergence. The results we obtained on simulated 

signals have enabled us to detect and segment different 

events in a time-series and particularly to segment transient 

non-stationary events. The results that we obtained on simu-

lated signals are promising for future real-world applica-

tions. 
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